Vol. 162
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-11-29
A Compact Novel Fractal Based Rectenna for RF Energy Harvesting
By
Progress In Electromagnetics Research C, Vol. 162, 148-156, 2025
Abstract
With the advancement of wireless communication, Radio Frequency (RF) energy harvesting has gained significant attention over the past decade. RF energy harvesting is emerging as a sustainable alternative to conventional batteries, enabling self-powered operation in wireless sensor networks and Internet-of-Things (IoT) devices. This work presents a single band fractal based rectenna (Antenna with Rectifier) system for efficient RF energy harvesting. Here a single-diode shunt rectifier converts RF signals into usable DC power which will be usable to many self-powered wireless devices applications. The results show that the proposed antenna (41.03×37.24×1.6 mm3) features a bandwidth of 45.64% ranging from 2.08 GHz to 3.31 GHz and reflection coefficient of -60 dB at 2.45 GHz. The proposed antenna obtained maximum gain of 6.02 dBi with maximum radiation efficiency of 71.4% at 2.45 GHz. A diode rectifier with single stub matching network is used in which a HSMS2860 Schottky diode is connected in shunt for the rectification. The proposed rectifier obtains PCE of 70.07% and DC output voltage of 1.664 V at 5 dBm input power (Pin).
Citation
Nipa Panchal Biswas, Puja Das, Anirban Karmakar, and Tamasi Moyra Panua, "A Compact Novel Fractal Based Rectenna for RF Energy Harvesting," Progress In Electromagnetics Research C, Vol. 162, 148-156, 2025.
doi:10.2528/PIERC25091302
References

1. Surender, Daasari, Md. Ahsan Halimi, Taimoor Khan, Fazal A. Talukdar, and Yahia M. M. Antar, "A 90° twisted quarter-sectored compact and circularly polarized DR-rectenna for RF energy harvesting applications," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 6, 1139-1143, 2022.
doi:10.1109/lawp.2022.3159482

2. Shi, Yanyan, Jianwei Jing, Yue Fan, Lan Yang, Yan Li, and Meng Wang, "A novel compact broadband rectenna for ambient RF energy harvesting," AEU --- International Journal of Electronics and Communications, Vol. 95, 264-270, 2018.
doi:10.1016/j.aeue.2018.08.035

3. Haboubi, Walid, Hakim Takhedmit, Jean-Daniel Lan Sun Luk, Salah-Eddine Adami, Bruno Allard, Francois Costa, Christian Vollaire, Odile Picon, and Laurent Cirio, "An efficient dual-circularly polarized rectenna for RF energy harvesting in the 2.45 GHz ISM band," Progress In Electromagnetics Research, Vol. 148, 31-39, 2014.
doi:10.2528/pier14031103

4. Shen, Shanpu, Chi-Yuk Chiu, and Ross D. Murch, "A dual-port triple-band L-probe microstrip patch rectenna for ambient RF energy harvesting," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 3071-3074, 2017.
doi:10.1109/lawp.2017.2761397

5. Palazzi, Valentina, Massimo Del Prete, and Marco Fantuzzi, "Scavenging for energy: A rectenna design for wireless energy harvesting in UHF mobile telephony bands," IEEE Microwave Magazine, Vol. 18, No. 1, 91-99, 2017.
doi:10.1109/mmm.2016.2616189

6. Liu, Weina, Lei Xu, and Huaweia Zhan, "Design of 2.4 GHz/5 GHz planar dual-band electrically small slot antenna based on impedance matching circuit," AEU --- International Journal of Electronics and Communications, Vol. 83, 322-328, 2018.
doi:10.1016/j.aeue.2017.08.040

7. Kuzu, Suleyman and Nursel Akcam, "Array antenna using defected ground structure shaped with fractal form generated by Apollonius circle," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1020-1023, 2016.
doi:10.1109/lawp.2016.2616944

8. Choukiker, Yogesh Kumar, Satish K. Sharma, and Santanu K. Behera, "Hybrid fractal shape planar monopole antenna covering multiband wireless communications with MIMO implementation for handheld mobile devices," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 3, 1483-1488, 2014.
doi:10.1109/tap.2013.2295213

9. Cao, Lei, Shu Yan, and Hanhua Yang, "Study and design of a modified fractal antenna for RFID applications," ISECS International Colloquium on Computing, Communication, Control, and Management, Vol. 1, 8-11, Sanya, China, 2009.
doi:10.1109/cccm.2009.5268163

10. Yadav, Sanjeev, Pushpanjali Jain, and Ruchika Choudhary, "A novel approach of triangular-circular fractal antenna," International Conference on Advances in Computing, Communications and Informatics (ICACCI), 708-711, Delhi, India, 2014.
doi:10.1109/icacci.2014.6968475

11. Singh, Ashutosh Kumar, Reneez Ahamad Kabeer, Z. Ali, and D. Gurjar, "Performance analysis of compact Koch fractal antennas at varying iterations," Students Conference on Engineering and Systems (SCES), 1-5, Allahabad, India, 2013.
doi:10.1109/sces.2013.6547565

12. Shrestha, Sika, Seung-Jo Han, Sun-Kuk Noh, Sunwoong Kim, Hyun-Bai Kim, and Dong-You Choi, "Design of modified Sierpinski fractal based miniaturized patch antenna," The International Conference on Information Networking (ICOIN), 274-279, Bangkok, Thailand, 2013.
doi:10.1109/icoin.2013.6496389

13. Surender, Daasari, Taimoor Khan, Fazal A. Talukdar, Asok De, Yahia M. M. Antar, and A. P. Freundorfer, "Key components of rectenna system: A comprehensive survey," IETE Journal of Research, Vol. 68, No. 5, 3379-3405, 2022.
doi:10.1080/03772063.2020.1761268

14. Das, P., A. Karmakar, M. A. Halimi, P. Bhowmik, and S. Huda, "A fractal-based single band DR-rectenna for RF energy harvesting," Journal of Electromagnetic Waves and Applications, Vol. 39, No. 8, 918-930, 2025.
doi:10.1080/09205071.2025.2487506

15. Niotaki, Kyriaki, Apostolos Georgiadis, Ana Collado, and John S. Vardakas, "Dual-band resistance compression networks for improved rectifier performance," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 12, 3512-3521, 2014.
doi:10.1109/tmtt.2014.2364830

16. Contreras, Andry, Benigno Rodríguez, Leonardo Steinfeld, Javier Schandy, and Mariana Siniscalchi, "Design of a rectenna for energy harvesting on Wi-Fi at 2.45 GHz," Argentine Conference on Electronics (CAE), 63-68, Buenos Aires, Argentina, 2020.
doi:10.1109/cae48787.2020.9046372

17. Çelik, Kayhan and Erol Kurt, "A novel meander line integrated E-shaped rectenna for energy harvesting applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 1, e21627, 2019.
doi:10.1002/mmce.21627

18. Assogba, Ognadon, Abdoul Karim Mbodji, Salick Diagne, and Abdou Karim Diallo, "Design of a rectenna in 2.45 GHz band frequency for energy harvesting," Energy and Power Engineering, Vol. 13, No. 9, 333-342, 2021.
doi:10.4236/epe.2021.139023

19. Shi, Yanyan, Yue Fan, Jianwei Jing, Lan Yang, Yan Li, and Meng Wang, "An efficient fractal rectenna for RF energy harvest at 2.45 GHz ISM band," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 28, No. 9, e21424, 2018.
doi:10.1002/mmce.21424

20. Kuang, Dingding, Gang Dong, Hui Nie, Wei Xiong, and Yintang Yang, "Novel double fractal patches structure Antenna-in-Package based on LTCC technology for 2.4 GHz applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 28, No. 5, e21266, 2018.
doi:10.1002/mmce.21266

21. Surender, Daasari, Taimoor Khan, and Fazal A. Talukdar, "A low-profile single band dielectric resonator antenna for radio frequency energy harvesting," Advanced Communication Technologies and Signal Processing (ACTS), 1-5, Silchar, India, 2020.
doi:10.1109/acts49415.2020.9350478

22. Surender, Daasari, Md. Ahsan Halimi, Taimoor Khan, Fazal A. Talukdar, Shiban K. Koul, and Yahia M. M. Antar, "2.45 GHz Wi-Fi band operated circularly polarized rectenna for RF energy harvesting in smart city applications," Journal of Electromagnetic Waves and Applications, Vol. 36, No. 3, 407-423, 2022.
doi:10.1080/09205071.2021.1970030

23. Ji, Shuai, Hua Qi, and Huifeng Zhang, "A novel rectenna for 2.45 GHz wireless power transmission with PBG antenna," CIE International Conference on Radar (RADAR), 1-3, Guangzhou, China, 2016.
doi:10.1109/radar.2016.8059420

24. Chuma, Euclides Lourenço, Lisandro de la Torre Rodríguez, Yuzo Iano, Leonardo L. Bravo Roger, and Miguel-Angel Sanchez-Soriano, "Compact rectenna based on a fractal geometry with a high conversion energy efficiency per area," IET Microwaves, Antennas & Propagation, Vol. 12, No. 2, 173-178, 2018.
doi:10.1049/iet-map.2016.1150

25. Dhar, Abhishek, Prabina Pattanayak, Akhilesh Kumar, Devendra Singh Gurjar, and Brijesh Kumar, "Design of a hexagonal slot rectenna for RF energy harvesting in Wi-Fi/WLAN applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 32, No. 12, e23512, 2022.
doi:10.1002/mmce.23512