Vol. 162
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-12-02
Design and Analysis of a Six-Phase Hybrid-Excited Reverse-Salient Fault-Tolerant Permanent Magnet Motor for Electric Vehicles
By
Progress In Electromagnetics Research C, Vol. 162, 175-187, 2025
Abstract
Conventional permanent magnet synchronous motors (PMSMs) suffer from limitations in speed regulation range, poor fault tolerance, and restricted torque output in electric vehicle drive applications. To address these limitations, this paper proposes a six-phase, 12-slot/10-pole hybrid-excited reverse-salient fault-tolerant motor (FT-HE-RSPM). To achieve reverse-salient characteristics and regulate the air-gap magnetic field, the rotor adopts segmented permanent magnets and a q-axis magnetic barrier. This design increases the d-axis inductance while reducing the q-axis inductance, achieving the reverse-salient characteristic Ld > Lq under rated conditions. Additionally, both the stator and rotor adopt segmented structures, forming axial magnetic paths via magnetic bridges. The excitation windings are embedded in the stator using non-magnetic materials, and the air-gap magnetic field is regulated by controlling the excitation current. The motor's magnetic field regulation mechanism was analyzed using the equivalent magnetic circuit method. Combined with three-dimensional finite element analysis (3D-FEA), the motor's electromagnetic performance and fault-tolerant characteristics were investigated, leading to the design of a current reconstruction fault-tolerant control strategy for single-phase open-circuit faults. Results demonstrate that this motor exhibits high torque output capability, excellent flux regulation characteristics, high efficiency, and outstanding fault tolerance, meeting the demands of complex operating conditions in electric vehicles.
Citation
Canwei Zhang, Zhangqi Liu, Xiping Liu, and Ruipan Lu, "Design and Analysis of a Six-Phase Hybrid-Excited Reverse-Salient Fault-Tolerant Permanent Magnet Motor for Electric Vehicles," Progress In Electromagnetics Research C, Vol. 162, 175-187, 2025.
doi:10.2528/PIERC25091503
References

1. Gallegos, Jimmy, Paul Arévalo, Christian Montaleza, and Francisco Jurado, "Sustainable electrification-advances and challenges in electrical-distribution networks: A review," Sustainability, Vol. 16, No. 2, 698, 2024.
doi:10.3390/su16020698

2. Zhang, Xudong, Feng Gao, Xianzheng Gong, Zhihong Wang, and Yu Liu, "Comparison of climate change impact between power system of electric vehicles and internal combustion engine vehicles," Advances in Energy and Environmental Materials, 739-747, Singapore, 2018.
doi:10.1007/978-981-13-0158-2_75

3. Zheng, Junqiang, Wenxiang Zhao, Jinghua Ji, and Christopher H. T. Lee, "Quantitative analysis on maximum efficiency point and specific high-efficiency region of permanent-magnet machines," IEEE Transactions on Industrial Electronics, Vol. 69, No. 2, 1333-1345, Feb. 2022.
doi:10.1109/tie.2021.3059552

4. Hlioui, S., M. Gabsi, H. Ben Ahmed, G. Barakat, Y. Amara, F. Chabour, and J. J. H. Paulides, "Hybrid excited synchronous machines," IEEE Transactions on Magnetics, Vol. 58, No. 2, 1-10, Feb. 2022.
doi:10.1109/tmag.2021.3079228

5. Du, Longxin, Xiping Liu, Jiesheng Fu, Jianwei Liang, and Chaozhi Huang, "Design and optimization of reverse salient permanent magnet synchronous motor based on controllable leakage flux," CES Transactions on Electrical Machines and Systems, Vol. 5, No. 2, 163-173, Jun. 2021.
doi:10.30941/cestems.2021.00020

6. Kosaka, Takashi, Muthubabu Sridharbabu, Masayoshi Yamamoto, and Nobuyuki Matsui, "Design studies on hybrid excitation motor for main spindle drive in machine tools," IEEE Transactions on Industrial Electronics, Vol. 57, No. 11, 3807-3813, Nov. 2010.
doi:10.1109/tie.2010.2040560

7. Contò, Chiara and Nicola Bianchi, "A hybrid-excitation synchronous motor with a change in polarity," Machines, Vol. 10, No. 10, 869, 2022.
doi:10.3390/machines10100869

8. Mudhigollam, Uday Kumar, Umakanta Choudhury, and Kamalesh Hatua, "A new rotor excitation topology for hybrid excitation machine," 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 1-6, Trivandrum, India, 2016.
doi:10.1109/pedes.2016.7914303

9. Liu, Ye, Zhuoran Zhang, and Xiaoxiang Zhang, "Design and optimization of hybrid excitation synchronous machines with magnetic shunting rotor for electric vehicle traction applications," IEEE Transactions on Industry Applications, Vol. 53, No. 6, 5252-5261, Nov.-Dec. 2017.
doi:10.1109/tia.2017.2720671

10. Wang, Huijun, Yanhong Xue, Juncheng Du, and He Li, "Design and evaluation of modular stator hybrid-excitation switched reluctance motor for torque performance improvement," IEEE Transactions on Industrial Electronics, Vol. 71, No. 10, 12814-12823, Oct. 2024.
doi:10.1109/tie.2024.3357899

11. Xu, Liang, Xinyu Zhu, Tingting Jiang, and Shuangxia Niu, "Design and optimization of a partitioned stator hybrid excited machine with inset PM from perspective of airgap field harmonics," IEEE Transactions on Energy Conversion, Vol. 38, No. 4, 2871-2883, Dec. 2023.
doi:10.1109/tec.2023.3288222

12. Meng, Yao, Xinyu Yang, Hong Chen, Shuhua Fang, and Qiangren Xu, "Design and analysis of a new hybrid-excited flux switching machine with dual-set of PMs," IEEE Transactions on Industrial Electronics, 1-12, 2025.
doi:10.1109/tie.2025.3594442

13. Yao, Fei, Quntao An, Xiaolong Gao, Lizhi Sun, and Thomas A. Lipo, "Principle of operation and performance of a synchronous machine employing a new harmonic excitation scheme," IEEE Transactions on Industry Applications, Vol. 51, No. 5, 3890-3898, Sep.-Oct. 2015.
doi:10.1109/tia.2015.2425363

14. Dutta, Rukmi and M. F. Rahman, "Design and analysis of an interior permanent magnet (IPM) machine with very wide constant power operation range," IEEE Transactions on Energy Conversion, Vol. 23, No. 1, 25-33, Mar. 2008.
doi:10.1109/tec.2007.905061

15. Zhao, Xiaokun, Baoquan Kou, and Changchuang Huang, "A reverse-salient permanent magnet synchronous motor and its dq-axis current distribution laws," IEEE Transactions on Industrial Electronics, Vol. 70, No. 4, 3337-3347, Apr. 2023.
doi:10.1109/tie.2022.3174281

16. Zhao, Xiaokun, Baoquan Kou, Lu Zhang, and Haoquan Zhang, "Design and analysis of permanent magnets in a negative-salient permanent magnet synchronous motor," IEEE Access, Vol. 8, 182249-182259, 2020.
doi:10.1109/access.2020.3026841

17. Zhao, Xiaokun, Baoquan Kou, Changchuang Huang, and Lu Zhang, "A reverse-salient permanent magnet synchronous motor for electric vehicles considering operating conditions," IEEE Transactions on Energy Conversion, Vol. 38, No. 1, 262-272, Mar. 2023.
doi:10.1109/tec.2022.3213571

18. Zhu, Xiaoyong, Juan Huang, Li Quan, Zixuan Xiang, and Bing Shi, "Comprehensive sensitivity analysis and multiobjective optimization research of permanent magnet flux-intensifying motors," IEEE Transactions on Industrial Electronics, Vol. 66, No. 4, 2613-2627, Apr. 2019.
doi:10.1109/tie.2018.2849961

19. Zhang, Gan, Wei Hua, Ming Cheng, and Jinguo Liao, "Design and comparison of two six-phase hybrid-excited flux-switching machines for EV/HEV applications," IEEE Transactions on Industrial Electronics, Vol. 63, No. 1, 481-493, Jan. 2016.
doi:10.1109/tie.2015.2447501

20. Zhang, Li, Ying Fan, Robert D. Lorenz, Ronghua Cui, Chenxue Li, and Ming Cheng, "Design and analysis of a new five-phase brushless hybrid-excitation fault-tolerant motor for electric vehicles," IEEE Transactions on Industry Applications, Vol. 53, No. 4, 3428-3437, Jul.-Aug. 2017.
doi:10.1109/tia.2017.2685359

21. Xu, Wang, Fan Ying, Yanlei Yu, Guanghui Yang, and Christopher H. T. Lee, "Design and analysis of a five phase dual stator hybrid excitation machine with spoke-type permanent magnet rotor," 2023 26th International Conference on Electrical Machines and Systems (ICEMS), 1987-1992, Zhuhai, China, 2023.
doi:10.1109/ICEMS59686.2023.10344450

22. Deng, Sisi, Li Zhang, and Dong Shen, "Investigation on wide-speed operation of a new five-phase fault-tolerant interior permanent magnet motor from perspective of flux-intensifying effect," IEEE Transactions on Magnetics, Vol. 59, No. 11, 1-6, Nov. 2023.
doi:10.1109/tmag.2023.3292918

23. Zhang, Li, Xuqing Li, Xiaoyong Zhu, and Chenhan Zhang, "Design and optimization of a five-phase reverse-salient fault-tolerant permanent magnet motor for electric vehicles," IEEE Transactions on Industrial Electronics, Vol. 72, No. 7, 6762-6774, Aug. 2025.
doi:10.1109/tie.2024.3511085

24. Zhu, Shengdao, Wenxiang Zhao, Jinghua Ji, Guohai Liu, and Christopher H. T. Lee, "Design to reduce modulated vibration in fractional-slot concentrated-windings PM machines considering slot–pole combination," IEEE Transactions on Transportation Electrification, Vol. 9, No. 1, 575-585, Mar. 2023.
doi:10.1109/tte.2022.3192639

25. Wu, Leilei, Ronghai Qu, and Dawei Li, "Reduction of rotor eddy-current losses for surface PM machines with fractional slot concentrated windings and retaining sleeve," IEEE Transactions on Magnetics, Vol. 50, No. 11, 1-4, Nov. 2014.
doi:10.1109/tmag.2014.2320791

26. Zhang, Gan, Wei Hua, Ming Cheng, Jinguo Liao, Kai Wang, and Jianzhong Zhang, "Investigation of an improved hybrid-excitation flux-switching brushless machine for HEV/EV applications," IEEE Transactions on Industry Applications, Vol. 51, No. 5, 3791-3799, Sep.-Oct. 2015.
doi:10.1109/tia.2015.2436877

27. Fu, J.-R. and T. A. Lipo, "Disturbance-free operation of a multiphase current-regulated motor drive with an opened phase," Conference Record of the 1993 IEEE Industry Applications Conference Twenty-Eighth IAS Annual Meeting, Vol. 1, 637-644, Toronto, ON, Canada, 1993.
doi:10.1109/ias.1993.298884

28. Rahmatullah, R., N. F. O. Serteller, and V. Topuz, "Modeling and simulation of faulty induction motor in DQ reference frame using MATLAB/SIMULINK with MATLAB/GUIDE for educational purpose," International Journal of Education and Information Technologies, Vol. 17, 7-20, 2023.
doi:10.46300/9109.2023.17.2