Vol. 163
Latest Volume
All Volumes
PIERC 163 [2025] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-12-10
Multi-Mode Dual Five-Phase Hybrid Excitation Motor High Efficiency Control Based on Gradient Descent
By
Progress In Electromagnetics Research C, Vol. 163, 1-10, 2025
Abstract
The multi-mode dual five-phase hybrid excitation (MM-DFHE) motor, owing to its unique dual-stator configuration, is capable of operating in four distinct modes, offering exceptional operational flexibility. However, this flexibility introduces a control challenge, particularly in Mode IV where the auxiliary stator acts as both an exciter and a torque producer. The additional current variables in this mode lead to suboptimal current distribution, compromising efficiency and dynamic response. To address this, this paper proposes a novel low-loss current optimization control strategy. The key contribution is a Gradient Descent (GD) based online optimization algorithm that dynamically distributes the auxiliary excitation current, specifically tailored for the improved Mode IV operation. This approach resolves the trade-off between loss minimization and dynamic performance prevalent in conventional methods. Simulated and experimental results demonstrate that the proposed strategy reduces total copper loss by up to 13% compared to conventional methods.
Citation
Yu Nan, Ye Yuan, Zhenzhen Kong, Xiaozhou Yang, Dong Mu, and Fan Yang, "Multi-Mode Dual Five-Phase Hybrid Excitation Motor High Efficiency Control Based on Gradient Descent," Progress In Electromagnetics Research C, Vol. 163, 1-10, 2025.
doi:10.2528/PIERC25091605
References

1. Guo, Leilei, Wei Xu, Nan Jin, and Han Xiao, "A DC-offset removed sensorless control method for PMSM based on SMO with an improved pre-filter and a speed immune position error compensation strategy," IEEE Transactions on Power Electronics, Vol. 40, No. 4, 5163-5176, 2025.
doi:10.1109/tpel.2024.3524749

2. Zhang, Hui, Peng Ran, and Zehua Zhang, "PMSM sensorless control based on super-twisting algorithm sliding mode observer with the IAORLS parameter estimations," Scientific Reports, Vol. 15, No. 1, 22386, 2025.
doi:10.1038/s41598-025-04030-3

3. Liu, Hui, Shicheng Yan, Yue Shen, Chiheng Li, Yafei Zhang, and Fida Hussain, "Model predictive control system based on direct yaw moment control for 4WID self-steering agriculture vehicle," International Journal of Agricultural and Biological Engineering, Vol. 14, No. 2, 175-181, 2021.
doi:10.25165/j.ijabe.20211402.5283

4. Sun, Jinlin, Zhen Wang, Shihong Ding, Jun Xia, and Gaoyong Xing, "Adaptive disturbance observer-based fixed time nonsingular terminal sliding mode control for path-tracking of unmanned agricultural tractors," Biosystems Engineering, Vol. 246, 96-109, 2024.
doi:10.1016/j.biosystemseng.2024.06.013

5. Wang, Xiaoguang, Ziwei Wan, Lei Tang, Wei Xu, and Meng Zhao, "Electromagnetic performance analysis of an axial flux hybrid excitation motor for HEV drives," IEEE Transactions on Applied Superconductivity, Vol. 31, No. 8, 1-5, Nov. 2021.
doi:10.1109/tasc.2021.3101785

6. Liang, Ge, Sheng Huang, Wu Liao, Zhaoyang Zhang, Yu Liu, Congqi Feng, Xuan Wu, and Shoudao Huang, "An optimized modulation of torque and current harmonics suppression for dual three-phase PMSM," IEEE Transactions on Transportation Electrification, Vol. 10, No. 2, 3443-3454, Jun. 2024.
doi:10.1109/tte.2023.3301971

7. Zou, Jibin, Chengsi Liu, Yongxiang Xu, and Guodong Yu, "A high-precision model for dual three-phase PMSM considering the effect of harmonics, magnetic saturation, and electromagnetic coupling," IEEE Transactions on Transportation Electrification, Vol. 10, No. 2, 2456-2468, Jun. 2024.
doi:10.1109/tte.2023.3299965

8. Chen, Qian, Haoran Wang, Zhimin Sang, Wei Qian, Guohai Liu, Gaohong Xu, and Zhengmeng Liu, "A multi-mode high-efficiency fault-tolerant permanent magnet machine," IEEE Transactions on Energy Conversion, Vol. 38, No. 3, 1999-2010, Sep. 2023.
doi:10.1109/tec.2023.3265418

9. Yan, W., D. Zhang, H. Li, et al., "A hybrid control system for multi-mode double stator switched reluctance motor," Proceedings of the CSEE, Vol. 44, No. 19, 7829-7840, Xi'an, China, 2024.
doi:10.13334/j.0258-8013.pcsee.231104

10. Hu, Xiaosong, Yapeng Li, Chen Lv, and Yonggang Liu, "Optimal energy management and sizing of a dual motor-driven electric powertrain," IEEE Transactions on Power Electronics, Vol. 34, No. 8, 7489-7501, Aug. 2018.
doi:10.1109/tpel.2018.2879225

11. Petkar, Sagar Gajanan and Vinay Kumar Thippiripati, "A novel duty-controlled DTC of a surface PMSM drive with reduced torque and flux ripples," IEEE Transactions on Industrial Electronics, Vol. 70, No. 4, 3373-3383, Apr. 2023.
doi:10.1109/tie.2022.3181405

12. Liu, Yu, Mingcheng Lyu, Sheng Huang, Wu Liao, Ge Liang, Congqi Feng, Xuan Wu, and Shoudao Huang, "Direct torque control schemes for dual three-phase PMSM considering unbalanced DC-link voltages," IEEE Transactions on Energy Conversion, Vol. 39, No. 1, 229-242, Mar. 2024.
doi:10.1109/tec.2023.3309903

13. Chen, Zhiwei, Shubin Jin, Yongpeng Shen, and Mingjie Wang, "Loss minimum control of surface permanent magnet synchronous motor based on virtual complementary square wave signal injection," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 13, No. 4, 5286-5295, Aug. 2025.
doi:10.1109/jestpe.2025.3538598

14. De Kock, Hugo W., Arnold J. Rix, and Maarten J. Kamper, "Optimal torque control of synchronous machines based on finite-element analysis," IEEE Transactions on Industrial Electronics, Vol. 57, No. 1, 413-419, Jan. 2010.
doi:10.1109/tie.2009.2030209

15. Bolognani, Silverio, Luca Peretti, Mauro Zigliotto, and Ezio Bertotto, "Commissioning of electromechanical conversion models for high dynamic PMSM drives," IEEE Transactions on Industrial Electronics, Vol. 57, No. 3, 986-993, Mar. 2010.
doi:10.1109/tie.2009.2026232

16. Alzayed, Mohamad and Hicham Chaoui, "Efficient simplified current sensorless dynamic direct voltage MTPA of interior PMSM for electric vehicles operation," IEEE Transactions on Vehicular Technology, Vol. 71, No. 12, 12701-12710, Dec. 2022.
doi:10.1109/tvt.2022.3198095

17. Liu, Guohai, Zhiyuan Chen, Liang Xu, Tingting Jiang, and Lele Chang, "MTPA control for DC-biased hybrid excitation machine using MTPA control law and virtual signal injection," IEEE Transactions on Transportation Electrification, Vol. 10, No. 1, 1571-1582, Mar. 2024.
doi:10.1109/tte.2023.3263736

18. Dianov, Anton, Fabio Tinazzi, Sandro Calligaro, and Silverio Bolognani, "Review and classification of MTPA control algorithms for synchronous motors," IEEE Transactions on Power Electronics, Vol. 37, No. 4, 3990-4007, Apr. 2022.
doi:10.1109/tpel.2021.3123062

19. Hang, Jun, Han Wu, Shichuan Ding, Yourui Huang, and Wei Hua, "Improved loss minimization control for IPMSM using equivalent conversion method," IEEE Transactions on Power Electronics, Vol. 36, No. 2, 1931-1940, Feb. 2021.
doi:10.1109/tpel.2020.3012018

20. Wang, Xueqing, Zheng Wang, Mingzhi He, Qun Zhou, Xueshan Liu, and Xin Meng, "Fault-tolerant control of dual three-phase PMSM drives with minimized copper loss," IEEE Transactions on Power Electronics, Vol. 36, No. 11, 12938-12953, Nov. 2021.
doi:10.1109/tpel.2021.3076509

21. Xu, Yongxiang, Boyuan Zheng, Guan Wang, Hao Yan, and Jibin Zou, "Current harmonic suppression in dual three-phase permanent magnet synchronous machine with extended state observer," IEEE Transactions on Power Electronics, Vol. 35, No. 11, 12166-12180, Nov. 2020.
doi:10.1109/tpel.2020.2989624

22. Xu, Liang, Hui Ren, Tingting Jiang, Guohai Liu, and Wenxiang Zhao, "Minimum copper loss fault-tolerant control of zero phase shift dual three-phase SPMSM by using reduced-order transformation matrices," IEEE Transactions on Energy Conversion, Vol. 39, No. 4, 2621-2630, Dec. 2024.
doi:10.1109/tec.2024.3385010