Vol. 163
Latest Volume
All Volumes
PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-12-16
Dielectric Response and Transient Potential Characteristics of Grounding Electrodes Considering the Frequency Effect of Frozen Soil
By
Progress In Electromagnetics Research C, Vol. 163, 100-107, 2026
Abstract
This study investigates the electrical characteristics of grounding electrodes in seasonal frozen soil through experimental and simulation approaches. Experimental measurements reveal the variation patterns of soil resistivity and dielectric constant within the frequency range of 100 Hz-10 MHz at different temperatures. The results indicate that decreasing temperature leads to increased resistivity and decreased dielectric constant, with both parameters tending to stabilize at high frequencies. Computations based on the method of moments demonstrate that accounting for the frequency dependence of frozen soil reduces the impedance magnitude by 20%-40% in the high-frequency range and results in more complex resonant behavior. When the length of the grounding electrode is less than the freezing depth, the high-frequency capacitive effect is significantly enhanced. Time-domain analysis shows that under lightning impulse conditions, the potential reduction is approximately 22% during the first return stroke and can reach up to 42% in subsequent return strokes. The study concludes that the frequency dependence of the electrical parameters of frozen soil has a considerable influence on the response of grounding electrodes and should be considered in modeling and lightning protection design.
Citation
Wei Shen, Mingxi Zhu, Xinmin Li, and Ziming He, "Dielectric Response and Transient Potential Characteristics of Grounding Electrodes Considering the Frequency Effect of Frozen Soil," Progress In Electromagnetics Research C, Vol. 163, 100-107, 2026.
doi:10.2528/PIERC25091708
References

1. Cai, W., C. Zhu, and W. Lein, "Temperature-and stress-dependent electrical responses of frozen soils," Acta Geotechnica, Vol. 20, 3835-3843, 2025.
doi:10.1007/s11440-025-02604-z

2. Tomaškovičová, Soňa and Thomas Ingeman-Nielsen, "Quantification of freeze-thaw hysteresis of unfrozen water content and electrical resistivity from time lapse measurements in the active layer and permafrost," Permafrost and Periglacial Processes, Vol. 35, No. 2, 79-97, 2024.
doi:10.1002/ppp.2201

3. Bai, Lige, Jing Li, Tieyu Liu, Zhenjiao Jiang, and Deqiang Mao, "Seasonal frozen soil electrical resistivity estimation based on capillary fractal model," Water Resources Research, Vol. 61, No. 3, e2024WR038224, Mar. 2025.
doi:10.1029/2024wr038224

4. Salarieh, B., Jeewantha De Silva, and Behzad Kordi, "High frequency response of grounding electrodes: Effect of soil dielectric constant," IET Generation, Transmission & Distribution, Vol. 14, No. 15, 2915-2921, 2020.
doi:10.1049/iet-gtd.2019.1554

5. Akbari, M., K. Sheshyekani, and M. R. Alemi, "The effect of frequency dependence of soil electrical parameters on the lightning performance of grounding systems," IEEE Transactions on Electromagnetic Compatibility, Vol. 55, No. 4, 739-746, Aug. 2013.
doi:10.1109/temc.2012.2222416

6. Sunjerga, Antonio, Marcos Rubinstein, Dragan Poljak, Marin Despalatović, Goran Petrović, and Farhad Rachidi, "High-frequency response of a hemispherical grounding electrode," Electric Power Systems Research, Vol. 226, 109877, 2024.
doi:10.1016/j.epsr.2023.109877

7. Wu, Shuyang, Tianjie Zhao, Jinmei Pan, Huazhu Xue, Lin Zhao, and Jiancheng Shi, "Improvement in modeling soil dielectric properties during freeze-thaw transitions," IEEE Geoscience and Remote Sensing Letters, Vol. 19, 1-5, 2022.
doi:10.1109/lgrs.2022.3154291

8. Mialon, Arnaud, Philippe Richaume, Delphine Leroux, Simone Bircher, Ahmad Al Bitar, Thierry Pellarin, Jean-Pierre Wigneron, and Yann H. Kerr, "Comparison of Dobson and Mironov dielectric models in the SMOS soil moisture retrieval algorithm," IEEE Transactions on Geoscience and Remote Sensing, Vol. 53, No. 6, 3084-3094, 2015.
doi:10.1109/tgrs.2014.2368585

9. Zheng, Donghai, Xin Li, Tianjie Zhao, Jun Wen, Rogier Van Der Velde, Mike Schwank, Xin Wang, Zuoliang Wang, and Zhongbo Su, "Impact of soil permittivity and temperature profile on L-band microwave emission of frozen soil," IEEE Transactions on Geoscience and Remote Sensing, Vol. 59, No. 5, 4080-4093, 2021.
doi:10.1109/tgrs.2020.3024971

10. Visacro, Silverio and Fernando H. Silveira, "The impact of the frequency dependence of soil parameters on the lightning performance of transmission lines," IEEE Transactions on Electromagnetic Compatibility, Vol. 57, No. 3, 434-441, 2015.
doi:10.1109/temc.2014.2384029

11. Kherif, Omar, Sofiane Chiheb, Madjid Teguar, Abdelouahab Mekhaldi, and Noureddine Harid, "Time-domain modeling of grounding systems' impulse response incorporating nonlinear and frequency-dependent aspects," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 4, 907-916, 2018.
doi:10.1109/temc.2017.2751564

12. Zhang, Xuanrui, Minxia Shi, Cong He, and Junhao Li, "On site oscillating lightning impulse test and insulation diagnose for power transformers," IEEE Transactions on Power Delivery, Vol. 35, No. 5, 2548-2550, 2020.
doi:10.1109/tpwrd.2020.2965804

13. Manjunath, Ashwin Desai Belaguppa, Fatima Khan, Nurym Noyanbayev, Noureddine Harid, Huw Griffiths, Ricardo Pereira Nogueira, Nilson Tadeu Camarinho De Oliveira, Manu Haddad, and Sarathi Ramanujam, "Investigation into variation of resistivity and permittivity of aqueous solutions and soils with frequency and current density," IEEE Transactions on Electromagnetic Compatibility, Vol. 64, No. 2, 443-455, 2022.
doi:10.1109/temc.2021.3127640

14. Heidler, F., J. M. Cvetic, and B. V. Stanic, "Calculation of lightning current parameters," IEEE Transactions on Power Delivery, Vol. 14, No. 2, 399-404, 1999.
doi:10.1109/61.754080

15. Honarbakhsh, Babak, "Grounding system analysis: Microwave engineering approach," IEEE Transactions on Electromagnetic Compatibility, Vol. 63, No. 1, 74-81, 2021.
doi:10.1109/temc.2020.2987107

16. Grcev, Leonid, "Modeling of grounding electrodes under lightning currents," IEEE Transactions on Electromagnetic Compatibility, Vol. 51, No. 3, 559-571, 2009.
doi:10.1109/temc.2009.2025771

17. Grcev, L., "Improved earthing system design practices for reduction of transient voltages," Proc. CIGRE, 1998.

18. Cao, Xiaobin, Ming Wei, Manxiang Wang, Jiacai Liu, Ruifang Li, and Lin Yang, "Evaluation principle and method of horizontal grounding electrode based on time-varying impedance," IET Science, Measurement & Technology, Vol. 15, No. 2, 174-183, 2021.
doi:10.1049/smt2.12019

19. Sheshyekani, Keyhan and Majed Akbari, "Evaluation of lightning-induced voltages on multiconductor overhead lines located above a lossy dispersive ground," IEEE Transactions on Power Delivery, Vol. 29, No. 2, 683-690, 2014.
doi:10.1109/tpwrd.2013.2271516

20. Visacro, Silverio and Rafael Alipio, "Frequency dependence of soil parameters: Experimental results, predicting formula and influence on the lightning response of grounding electrodes," IEEE Transactions on Power Delivery, Vol. 27, No. 2, 927-935, 2012.
doi:10.1109/tpwrd.2011.2179070

21. Wang, Shaoyang, Yan Gao, Mingli Chen, Zongxu Qiu, Hongbo Zhuang, and Runquan Huang, "Instrumentation for sub-ampere lightning current measurement on a tall meteorological tower in complex electromagnetic environment," Remote Sensing, Vol. 16, No. 7, 1307, 2024.
doi:10.3390/rs16071307

22. Shen, Jinxing, Jiancheng Gong, and Dong Zhou, "Lightning return stroke positioning method based on CWT narrowband feature extraction," Atmosphere, Vol. 16, No. 3, 302, 2025.
doi:10.3390/atmos16030302

23. Shen, Jinxing, Zheng Sun, Lihua Shi, and Shi Qiu, "Analysis of time-domain characteristics of microsecond-scale repetitive pulse discharge events in lightning," Atmosphere, Vol. 16, No. 5, 606, 2025.
doi:10.3390/atmos16050606