Vol. 135
Latest Volume
All Volumes
PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2025-10-26
Broadband Full Functional Reconfigurable Polarization Converter Based on Active Metasurface
By
Progress In Electromagnetics Research M, Vol. 135, 91-99, 2025
Abstract
This article proposes a novel polarization-reconfigurable metasurface converter with multi-functional operation capabilities for flexible polarization manipulation of electromagnetic waves. By integrating PIN diodes into a strategically designed unit cell, the converter achieves dynamic switching among all fundamental polarization conversion modes, including linear-to-linear (co- and cross-polarization), circular-to-circular (co- and cross-polarization), linear to circular polarization (LP-CP), and circular to linear polarization (CP-LP) conversions under both linearly and circularly polarized incidence. When the diodes are switched ON, the structure performs linear-to-cross-linear polarization conversion in the 9.5-16.4 GHz band and circular-to-co-circular polarization conversion in the 9.3-16.6 GHz band. Dual-band LP-CP and CP-LP conversions are attained in the 8.0-9.3/16.6-17.7 GHz and 8.1-9.4/16.8-17.9 GHz bands, respectively. When the diodes are OFF, the converter maintains co-polarized reflection under linearly polarized (LP) wave incidence, while reversing the handedness of the incident circularly polarized (CP) wave. Both full-wave simulations and experimental measurements demonstrate consistent performance across a broad bandwidth. This work provides a versatile and efficient solution for modern wireless communication and radar systems requiring adaptive polarization control.
Citation
Ke Wang, Chao Zhang, Wei Li, Jun Fan, Chuan Shao, Yichao Zhou, and Shijie Xie, "Broadband Full Functional Reconfigurable Polarization Converter Based on Active Metasurface," Progress In Electromagnetics Research M, Vol. 135, 91-99, 2025.
doi:10.2528/PIERM25091806
References

1. Zhuang, Zhizhong, Seong-Woo Suh, and J. S. Patel, "Polarization controller using nematic liquid crystals," Optics Letters, Vol. 24, No. 10, 694-696, 1999.
doi:10.1364/ol.24.000694

2. Fu, Huaxiang and Ronald E. Cohen, "Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics," Nature, Vol. 403, No. 6767, 281-283, 2000.
doi:10.1038/35002022

3. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.
doi:10.1126/science.1058847

4. Larouche, Stéphane, Yu-Ju Tsai, Talmage Tyler, Nan M. Jokerst, and David R. Smith, "Infrared metamaterial phase holograms," Nature Materials, Vol. 11, 450-454, 2012.
doi:10.1038/nmat3278

5. Cui, Tie-Jun, Shuo Liu, and Lian-Lin Li, "Information entropy of coding metasurface," Light: Science & Applications, Vol. 5, e16172, 2016.
doi:10.1038/lsa.2016.172

6. Li, Lianlin, Hanting Zhao, Che Liu, Long Li, and Tie Jun Cui, "Intelligent metasurfaces: Control, communication and computing," eLight, Vol. 2, No. 1, 7, 2022.
doi:10.1186/s43593-022-00013-3

7. Djoudi, Mounia, Mohamed Lamine Tounsi, Julien Sarrazin, and Massimiliano Casaletti, "Efficient design of a novel multibeam antenna using scalar metasurfaces," Progress In Electromagnetics Research, Vol. 183, 9-20, 2025.
doi:10.2528/pier24120904

8. Li, Fan, Taisong Pan, Weihan Li, Zujun Peng, Dengji Guo, Xiang Jia, Taiqi Hu, Lingxiao Wang, Wei Wang, Min Gao, et al., "Flexible intelligent microwave metasurface with shape-guided adaptive programming," Nature Communications, Vol. 16, No. 1, 3161, Apr. 2025.
doi:10.1038/s41467-025-58249-9

9. Zhou, Enyu, Yongzhi Cheng, Fu Chen, Hui Luo, and Xiangcheng Li, "Low-profile high-gain wideband multi-resonance microstrip-fed slot antenna with anisotropic metasurface," Progress In Electromagnetics Research, Vol. 175, 91-104, 2022.
doi:10.2528/pier22062201

10. Xu, Zhixiang, Cheng Ni, Yongzhi Cheng, Linhui Dong, and Ling Wu, "Photo-excited metasurface for tunable terahertz reflective circular polarization conversion and anomalous beam deflection at two frequencies independently," Nanomaterials, Vol. 13, No. 12, 1846, 2023.
doi:10.3390/nano13121846

11. You, Xiaolong, Rajour T. Ako, Madhu Bhaskaran, Sharath Sriram, Christophe Fumeaux, and Withawat Withayachumnankul, "Mechanically tunable terahertz circular polarizer with versatile functions," Laser & Photonics Reviews, Vol. 17, No. 4, 2200305, 2023.
doi:10.1002/lpor.202200305

12. Zhu, Wei, Yuancheng Fan, Ruisheng Yang, Huan Zhao, Guangzhou Geng, Xuyue Guo, Peng Li, Quanhong Fu, Kangyao Sun, Changzhi Gu, Yan Zhang, Junjie Li, and Fuli Zhang, "Full-space and arbitrary orbital angular momentum multiplexed beam manipulation with a titanium dioxide metadevice," Nano Letters, Vol. 25, No. 39, 14237-14245, 2025.
doi:10.1021/acs.nanolett.5c02519

13. Huang, Zhaorui, Zhouyu Wang, Yongzhi Cheng, Xiangcheng Li, Jian Wang, Lei Zhou, Hongxing Xu, Xiangang Luo, and Lin Chen, "Metasurfaces empower optical multiparameter imaging: A review," Science China Physics, Mechanics & Astronomy, Vol. 68, 274201, 2025.
doi:10.1007/s11433-025-2669-5

14. Wang, Junjie, Lingling Yang, Bin Cai, Yongzhi Cheng, and Xiangcheng Li, "Ultra-broadband tunable terahertz chiral metasurface integrated vanadium dioxides for tri-functional application," Physica E: Low-dimensional Systems and Nanostructures, Vol. 172, 116270, 2025.
doi:10.1016/j.physe.2025.116270

15. Rong, Chenguang, Lin Wu, Jin Tao, Yongzhi Cheng, Kaiyuan Wang, Lin Chen, Hui Luo, Fu Chen, and Xiangcheng Li, "Metasurface-based optical neural network and its application in next-generation optical communications and networks," Journal of Lightwave Technology, Vol. 43, No. 18, 8538-8562, 2025.
doi:10.1109/jlt.2025.3592022

16. Wang, Junjie, Yanfang Xiao, Lingling Yang, Dong Wang, Bin Cai, Hui Luo, and Yongzhi Cheng, "Dual-controlled terahertz tunable broadband metasurface based on photosensitive silicon and vanadium dioxide for multi-functional application," Physics Letters A, Vol. 556, 130841, 2025.
doi:10.1016/j.physleta.2025.130841

17. Wang, Shen-Yun, Jie-Dong Bi, Wei Liu, Wen Geyi, and Steven Gao, "Polarization-insensitive cross-polarization converter," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 8, 4670-4680, 2021.
doi:10.1109/tap.2021.3060087

18. Faraz, Zakriya, Babar Kamal, Sadiq Ullah, Amjad Aziz, and Haseeba Kanwal, "High efficient and ultra-wideband polarization converter based on I-shaped metasurface for RCS reduction," Optics Communications, Vol. 530, 129101, 2023.
doi:10.1016/j.optcom.2022.129101

19. Bo, Xin-Zhi, Hao Chen, Bu-Yun Yu, Ming-Yang Geng, Zhen-Guo Liu, and Wei-Bing Lu, "A flexible and transparent broadband metasurface polarization converter," IEEE Antennas and Wireless Propagation Letters, Vol. 23, No. 4, 1311-1315, 2024.
doi:10.1109/lawp.2024.3354787

20. Li, You, Yi Wang, and Qunsheng Cao, "Design of a multifunctional reconfigurable metasurface for polarization and propagation manipulation," IEEE Access, Vol. 7, 129183-129191, 2019.
doi:10.1109/access.2019.2939200

21. Wang, Shen-Yun, Wei Liu, and Wen Geyi, "A circular polarization converter based on in-linked loop antenna frequency selective surface," Applied Physics B, Vol. 124, 126, 2018.
doi:10.1007/s00340-018-6997-7

22. Li, Wei, Song Xia, Bin He, Jianzhong Chen, Hongyu Shi, Anxue Zhang, Zhenrong Li, and Zhuo Xu, "A reconfigurable polarization converter using active metasurface and its application in horn antenna," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 12, 5281-5290, 2016.
doi:10.1109/tap.2016.2620484

23. Sun, Shangyi, Wen Jiang, Shuxi Gong, and Tao Hong, "Reconfigurable linear-to-linear polarization conversion metasurface based on PIN diodes," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 9, 1722-1726, 2018.
doi:10.1109/lawp.2018.2864797

24. Yang, Heng, Shi Cong Wang, Peng Li, Yuan He, and Yun Jing Zhang, "A broadband multifunctional reconfigurable polarization conversion metasurface," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 7, 5759-5767, 2023.
doi:10.1109/tap.2023.3266498

25. Yang, Zhengyi, Na Kou, Shixing Yu, Fei Long, Lili Yuan, Zhao Ding, and Zhengping Zhang, "Reconfigurable multifunction polarization converter integrated with PIN diode," IEEE Microwave and Wireless Components Letters, Vol. 31, No. 6, 557-560, 2021.
doi:10.1109/lmwc.2021.3064039

26. Guo, Qingxin, Fushun Hao, Meijun Qu, Jianxun Su, and Zengrui Li, "Multiband multifunctional polarization converter based on reconfigurable metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 23, No. 4, 1241-1245, 2024.
doi:10.1109/lawp.2024.3350034

27. Pramanik, Samiran, Saikat Chandra Bakshi, Chaitali Koley, Debasis Mitra, Alessio Monti, and Filiberto Bilotti, "Active metasurface-based reconfigurable polarization converter with multiple and simultaneous functionalities," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 3, 522-526, 2023.
doi:10.1109/lawp.2022.3217130

28. Liu, Wei, Jun Chen Ke, Cong Xiao, Lei Zhang, Qiang Cheng, and Tie Jun Cui, "Broadband polarization-reconfigurable converter using active metasurfaces," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 4, 3725-3730, 2023.
doi:10.1109/tap.2023.3240861

29. Bhattacharjee, Ankit and Santanu Dwari, "Design of an anisotropic reconfigurable reflective polarization converter for realizing circular polarization-reconfigurable antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 12, 2392-2396, 2022.
doi:10.1109/lawp.2022.3194347

30. Zhu, Shuang Shuang, Ping Wang, Yong Zhang, Zhong Ming Yan, Yu Wang, and Hong Cheng Zhou, "A reconfigurable polarization converter and related application as horn antenna cladding," Journal of Applied Physics, Vol. 133, No. 2, 023102, 2023.
doi:10.1063/5.0130212

31. Lin, Baoqin, Wenzhun Huang, Jianxin Guo, Yanwei Wang, Zhe Liu, and Hongjun Ye, "A high efficiency ultra-wideband circular-to-linear polarization conversion metasurface," Optics Communications, Vol. 529, 129102, 2023.
doi:10.1016/j.optcom.2022.129102