Vol. 161
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-11-10
Non-Contact Microwave Sensor for High-Sensitivity Medical Ethanol Concentration Detection Using Coupled Microstrip Coupler
By
Progress In Electromagnetics Research C, Vol. 161, 205-211, 2025
Abstract
This paper presents a medical ethanol concentration sensor based on the principles of liquid-coupling loss, which enables rapid and accurate measurement and classification of medical ethanol concentrations. The sensor system consists of integrated circuits for liquid-coupling loss, amplitude detection, signal processing, and visualization. It utilizes variations in RF signal amplitude to determine the concentration. Theoretical analysis, grounded in the Bruggeman model, quantitatively correlates the dielectric constant of medical ethanol with its concentration, thereby establishing a robust theoretical foundation for the sensor design. Experimental validation demonstrates the sensor's ability to precisely differentiate among medical ethanol concentrations of 95%, 75%, and 50% at test frequencies of 1 GHz, 2 GHz, and 3 GHz. The agreement between empirical data and theoretical predictions confirms the sensor's efficacy and reliability. Key advantages include user-friendly operation, cost efficiency, and intuitively presented results, rendering the sensor highly suitable for broad medical applications.
Citation
Run-Lin Zhang, Shujiang Zhang, and Tao Tang, "Non-Contact Microwave Sensor for High-Sensitivity Medical Ethanol Concentration Detection Using Coupled Microstrip Coupler," Progress In Electromagnetics Research C, Vol. 161, 205-211, 2025.
doi:10.2528/PIERC25092005
References

1. Le Daré, Brendan and Thomas Gicquel, "Therapeutic applications of ethanol: A review," Journal of Pharmacy and Pharmaceutical Sciences, Vol. 22, No. 1, 525-535, 2019.
doi:10.18433/jpps30572

2. Halsall, Lauren, Patricia Irizar, Sam Burton, Sara Waring, Susan Giles, Laura Goodwin, and Andrew Jones, "Hazardous, harmful, and dependent alcohol use in healthcare professionals: A systematic review and meta-analysis," Frontiers in Public Health, Vol. 11, 1304468, 2023.
doi:10.3389/fpubh.2023.1304468

3. Miricioiu, Marius Gheorghe, Violeta Niculescu, Oana Romina Dinca, Florin Mitu, and Mihaela Emanuela Craciun, "Analytical errors in routine gas chromatography analysis," Revista de Chimie, Vol. 67, No. 3, 396-400, 2016.
doi:10.37358/Rev.Chim.1949

4. Drolc, Andreja, Petar Djinović, and Albin Pintar, "Gas chromatography analysis: Method validation and measurement uncertainty evaluation for volume fraction measurements of gases in simulated reformate gas stream," Accreditation and Quality Assurance, Vol. 18, No. 3, 225-233, 2013.
doi:10.1007/s00769-013-0980-0

5. Monad Lab Tech, "How much is a gas chromatography machine? Understanding costs and considerations," https://monadlabtech.com/blogs/how-much-is-a-gas-chromatography-machine-understanding-costs-and-considerations, 2024.

6. Cengiz, Cihan, Maria Konstantinou, Marien Harkes, Danko Boonstra, Alba Rodríguez Piedrabuena, and Arno Talmon, "Application of concentration conductivity measurement (CCM) for porosity and density profiling in granular media," Measurement, Vol. 245, 116644, 2025.
doi:10.1016/j.measurement.2025.116644

7. Biscay, Julien, Ewan Findlay, and Lynn Dennany, "Electrochemical monitoring of alcohol in sweat," Talanta, Vol. 224, 121815, 2021.
doi:10.1016/j.talanta.2020.121815

8. Shaver, Alexander and Netzahualcóyotl Arroyo-Currás, "The challenge of long-term stability for nucleic acid-based electrochemical sensors," Current Opinion in Electrochemistry, Vol. 32, 100902, 2022.
doi:10.1016/j.coelec.2021.100902

9. Parthasarathy, S., V. Nandhini, D. Prakalya, and B. G. Jeyaprakash, "Light-assisted ethanol sensor at ambient temperature using spray deposited ZnO thin films," International Journal of ChemTech Research, Vol. 7, No. 2, 974-4290, 2015.

10. Mourya, Vikash, Sapana Yadav, Pooja Lohia, Adarsh Chandra Mishra, D. K. Dwivedi, and Upendra Kulshrestha, "High-precision alcohol sensing using twin core photonic crystal fiber," Photonics and Nanostructures --- Fundamentals and Applications, Vol. 63, 101348, 2025.
doi:10.1016/j.photonics.2024.101348

11. Jiang, Yuxuan, Yating Yi, Gilberto Brambilla, and Pengfei Wang, "High-sensitivity, fast-response ethanol gas optical sensor based on a dual microfiber coupler structure with the Vernier effect," Optics Letters, Vol. 46, No. 7, 1558-1561, 2021.
doi:10.1364/ol.418953

12. Escalante-Martinez, J. E., L. J. Morales-Mendoza, C. Calderon-Ramon, L. D. Romero Juarez, E. Santes Paredes, J. Visiconti Garcia, J. R. Laguna-Camacho, S. N. Gonzalez-Rocha, E. Mejia-Sanchez, J. Garrido-Melendez, H. Lopez-Calderon, and J. Martinez-Castillo, "Fractional derivatives modeling dielectric properties of biological tissue," 2018 IEEE XXV International Conference on Electronics, Electrical Engineering and Computing (INTERCON), 1-3, Lima, Peru, 2018.
doi:10.1109/intercon.2018.8526460

13. Tuncer, Enis and Gunnar A. Niklasson, "Properties of Bruggeman dielectric mixture expression," 2014 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), 875-878, Des Moines, IA, USA, 2014.
doi:10.1109/ceidp.2014.6995867

14. Rotaru, C., C. Flueraru, S. Nastase, and I. Rotaru, "Dielectric function evolution as Bruggeman method solution," 1997 International Semiconductor Conference 20th Edition, CAS'97 Proceedings, Vol. 2, 447-450, Sinaia, Romania, 1997.
doi:10.1109/smicnd.1997.651243

15. Goyal, Nikunj and Ravi Panwar, "Dielectric characterization of electromagnetic mixing model assisted optimization derived heterogeneous composites for stealth technology," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 30, No. 2, 690-699, 2023.
doi:10.1109/tdei.2022.3225765

16. Ivanov, S. I. and A. P. Lavrov, "Optimal operation modes of low cost RF power diode detector on multi-tone signals," 2018 International Symposium on Consumer Technologies (ISCT), 51-53, St. Petersburg, Russia, 2018.
doi:10.1109/isce.2018.8408917

17. Hao, Xiucheng, Yongan Zheng, Fan Tian, Qiang Zhou, Heyi Li, Zexue Liu, Junhua Liu, and Huailin Liao, "A reverse-RSSI logarithmic power detector with +35-dBm maximum detectable power in 180-nm CMOS," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 9, 610-613, 2019.
doi:10.1109/lmwc.2019.2933184

18. Yoo, Mookyoung, Sanggyun Kang, Byeongkwan Jin, Hyeoktae Son, Kyounghwan Kim, Jihyang Wi, Gibae Nam, Nam Ho Bae, and Hyoungho Ko, "Low-noise operational amplifier using dual-path dual-chopper fill-in technique," IEEE Sensors Journal, Vol. 24, No. 8, 12550-12559, 2024.
doi:10.1109/jsen.2024.3368023

19. Aiello, Orazio, Paolo Crovetti, Pedro Toledo, and Massimo Alioto, "Rail-to-rail dynamic voltage comparator scalable down to pW-range power and 0.15-V supply," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 68, No. 7, 2675-2679, 2021.
doi:10.1109/tcsii.2021.3059164

20. Ishii, Tomoya, Sheyang Ning, Masahiro Tanaka, Kota Tsurumi, and Ken Takeuchi, "Adaptive comparator bias-current control of 0.6 V input boost converter for ReRAM program voltages in low power embedded applications," IEEE Journal of Solid-State Circuits, Vol. 51, No. 10, 2389-2397, 2016.
doi:10.1109/jssc.2016.2584640

21. Summatta, Chuthong, Tharathip Phurahong, Weera Rattanangam, and Weerathum Chaiyong, "Low-cost and compact window comparator circuit with MOSFET-resistor voltage references," 2019 IEEE 2nd International Conference on Power and Energy Applications (ICPEA), 75-78, Singapore, 2019.
doi:10.1109/icpea.2019.8818512

22. Summatta, Chuthong and Tharathip Phurahong, "Three-stage window comparator circuit with MOSFET-resistor voltage reference," 2020 3rd International Conference on Power and Energy Applications (ICPEA), 37-40, Busan, Korea (South), 2020.
doi:10.1109/icpea49807.2020.9280156

23. Nguyen, Tuan-Khanh and Chao-Hsiung Tseng, "New radio-frequency liquid permittivity measurement system using filter-based microfluidic sensor," IEEE Sensors Journal, Vol. 23, No. 12, 12785-12795, 2023.
doi:10.1109/jsen.2023.3270284

24. Liu, Weina and Lei Xu, "Dual-band microwave sensor for sensing application of microfluidic based on transmission line loaded pair of SIR resonators," IEEE Transactions on Instrumentation and Measurement, Vol. 73, 1-11, 2024.
doi:10.1109/tim.2024.3406799

25. Song, Yiran, Enkang Wu, Peng Zhao, Cong Wang, Mikhail Parkhomenko, Hong Chen, Svetlana Von Gratowski, and Junge Liang, "Metamaterial-inspired microwave sensor for ethanol detection," 2022 10th International Symposium on Next-Generation Electronics (ISNE), 1-3, Wuxi, China, 2023.
doi:10.1109/isne56211.2023.10221672