Vol. 162
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-12-01
Broadband Sequential Load Modulation Power Amplifier for Expanding Design Space
By
Progress In Electromagnetics Research C, Vol. 162, 166-174, 2025
Abstract
This study proposes an extended design methodology for sequential load-modulated balanced amplifiers (SLMBAs), centered on regulating the impedance characteristics of balanced amplifiers (BAs) through continuous F-1 class control amplifiers (CA). By expanding the load operating range of CAs at the second harmonic, the flexibility of high-efficiency designs is effectively enhanced. Theoretical analysis demonstrates that this load modulation mechanism overcomes the structural limitations of conventional LMBA, enabling high-efficiency power amplification across a wide frequency range and under conditions of large output power back-off (OPBO). Based on this architecture, an SLMBA prototype operating from 2.0 to 3.7 GHz was developed. Test results indicate that in saturated and 8 dB OPBO conditions, the drain efficiency (DE) reached 55.2%-68.7% and 46.8%-59.0%, respectively. When fed with an LTE signal featuring a 100 MHz bandwidth and 8 dB PAPR, the average DE across the entire bandwidth ranged from 49.2% to 58.3%, with an adjacent channel leakage power ratio (ACPR) exceeding -35 dBc.
Citation
Jiadong Yu, Jingchang Nan, and Heyang Sun, "Broadband Sequential Load Modulation Power Amplifier for Expanding Design Space," Progress In Electromagnetics Research C, Vol. 162, 166-174, 2025.
doi:10.2528/PIERC25092102
References

1. Lien, Shao-Yu, Shin-Lin Shieh, Yenming Huang, Borching Su, Yung-Lin Hsu, and Hung-Yu Wei, "5G new radio: Waveform, frame structure, multiple access, and initial access," IEEE Communications Magazine, Vol. 55, No. 6, 64-71, 2017.
doi:10.1109/mcom.2017.1601107

2. Shafi, Mansoor, Andreas F. Molisch, Peter J. Smith, Thomas Haustein, Peiying Zhu, Prasan De Silva, Fredrik Tufvesson, Anass Benjebbour, and Gerhard Wunder, "5G: A tutorial overview of standards, trials, challenges, deployment, and practice," IEEE Journal on Selected Areas in Communications, Vol. 35, No. 6, 1201-1221, 2017.
doi:10.1109/jsac.2017.2692307

3. Shi, Weimin, Songbai He, Xiaoyu Zhu, Bin Song, Zhitao Zhu, Gideon Naah, and Min Zhang, "Broadband continuous-mode Doherty power amplifiers with noninfinity peaking impedance," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 2, 1034-1046, 2018.
doi:10.1109/tmtt.2017.2749224

4. Shepphard, Daniel J., Jeffrey Powell, and Steve C. Cripps, "An efficient broadband reconfigurable power amplifier using active load modulation," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 6, 443-445, 2016.
doi:10.1109/lmwc.2016.2559503

5. Shepphard, Daniel J., Jeffrey Powell, and Steve C. Cripps, "A broadband reconfigurable load modulated balanced amplifier (LMBA)," 2017 IEEE MTT-S International Microwave Symposium (IMS), 947-949, Honololu, HI, USA, 2017.
doi:10.1109/MWSYM.2017.8058743

6. Quaglia, Roberto and Steve Cripps, "A load modulated balanced amplifier for telecom applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 3, 1328-1338, 2018.
doi:10.1109/tmtt.2017.2766066

7. Pednekar, Prathamesh H. and Taylor W. Barton, "RF-input load modulated balanced amplifier," 2017 IEEE MTT-S International Microwave Symposium (IMS), 1730-1733, Honololu, HI, USA, 2017.
doi:10.1109/MWSYM.2017.8058977

8. Pednekar, Prathamesh H., Eric Berry, and Taylor Wallis Barton, "RF-input load modulated balanced amplifier with octave bandwidth," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 12, 5181-5191, 2017.
doi:10.1109/tmtt.2017.2748123

9. Pednekar, Prathamesh H., William Hallberg, Christian Fager, and Taylor Wallis Barton, "Analysis and design of a Doherty-like RF-input load modulated balanced amplifier," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 12, 5322-5335, 2018.
doi:10.1109/tmtt.2018.2869571

10. Pang, Jingzhou, Yue Li, Meng Li, Yikang Zhang, Xin Yu Zhou, Zhijiang Dai, and Anding Zhu, "Analysis and design of highly efficient wideband RF-input sequential load modulated balanced power amplifier," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 5, 1741-1753, 2020.
doi:10.1109/tmtt.2019.2963868

11. Pang, Jingzhou, Chenhao Chu, Yue Li, and Anding Zhu, "Broadband RF-input continuous-mode load-modulated balanced power amplifier with input phase adjustment," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 10, 4466-4478, 2020.
doi:10.1109/tmtt.2020.3012141

12. Cao, Yuchen and Kenle Chen, "Pseudo-Doherty load-modulated balanced amplifier with wide bandwidth and extended power back-off range," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 7, 3172-3183, 2020.
doi:10.1109/tmtt.2020.2983925

13. Cao, Yuchen, Haifeng Lyu, and Kenle Chen, "Asymmetrical load modulated balanced amplifier with continuum of modulation ratio and dual-octave bandwidth," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 1, 682-696, 2021.
doi:10.1109/tmtt.2020.3014616

14. Colantonio, Paolo, Franco Giannini, Giorgio Leuzzi, and Ernesto Limiti, "High efficiency low-voltage power amplifier design by second-harmonic manipulation," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 10, No. 1, 19-32, 2000.

15. Chu, Chenhao, Tushar Sharma, Sagar K. Dhar, Ramzi Darraji, Xiaoyu Wang, Jingzhou Pang, and Anding Zhu, "Waveform engineered sequential load modulated balanced amplifier with continuous class-F-1 and class-J operation," IEEE Transactions on Microwave Theory and Techniques, Vol. 70, No. 2, 1269-1283, 2021.
doi:10.1109/tmtt.2021.3123678

16. Cao, Yuchen, Haifeng Lyu, and Kenle Chen, "Continuous-mode hybrid asymmetrical load-modulated balanced amplifier with three-way modulation and multi-band reconfigurability," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 69, No. 3, 1077-1090, 2022.
doi:10.1109/tcsi.2021.3129166

17. Chu, Chenhao, Jingzhou Pang, Ramzi Darraji, Sagar K. Dhar, Tushar Sharma, and Anding Zhu, "Broadband sequential load modulated balanced amplifier with extended design space using second harmonic manipulation," IEEE Transactions on Microwave Theory and Techniques, Vol. 71, No. 5, 1990-2003, 2023.
doi:10.1109/tmtt.2022.3226440

18. Colantonio, Paolo, Franco Giannini, and Ernesto Limiti, High Efficiency RF and Microwave Solid State Power Amplifiers, John Wiley & Sons, 2009.
doi:10.1002/9780470746547

19. Jang, Haedong, Patrick Roblin, and Zhijian Xie, "Model-based nonlinear embedding for power-amplifier design," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 9, 1986-2002, 2014.
doi:10.1109/tmtt.2014.2333498

20. Saad, Paul, Rui Hou, Richard Hellberg, and Bo Berglund, "The continuum of load modulation ratio from Doherty to traveling-wave amplifiers," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 12, 5101-5113, 2019.
doi:10.1109/tmtt.2019.2938167

21. Mehter, Egemen and Murat Üçüncü, "Radio frequency (RF) power amplifier design providing high power efficiency in a wide dynamic range," Electronics, Vol. 14, No. 7, 1435, 2025.
doi:10.3390/electronics14071435

22. Mochumbe, Sagini E. and Youngoo Yang, "Design of a load modulated balanced amplifier with a two-stage control power amplifier," Journal of Electromagnetic Engineering and Science, Vol. 23, No. 3, 294-301, 2023.
doi:10.26866/jees.2023.3.r.170