Vol. 162
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-11-22
Wideband Low RCS Metasurface Conformal Sheet for Stealth Applications
By
Progress In Electromagnetics Research C, Vol. 162, 94-105, 2025
Abstract
In this paper, a wideband design of a conformal metasurface for RCS reduction in the range of 6.3~8.3 GHz is introduced. The proposed unit cell has a reflection amplitude less than -0.5 dB. The methodology for reducing the radar cross section using metamaterial is introduced along with the evolution of the design of the proposed unit cell. The conformal array is modeled using this unit, and the performance of a metasurface when being attached to a conformal metallic object is investigated. When the proposed metasurface is attached to a 3D object, it can achieve more diffused scattering patterns and wide scattering angles, regardless of the polarization of the incident waves and across a wide range of incident angles. It can achieve more than 10 dB reduction RCS. The sheet operates well for incident wave angles up to 60°. Both simulated and measured results demonstrate that the conformal metasurface effectively achieves diffuse reflection and RCS reduction which holds significant potential for applications in the field of advanced stealth technology, and the sheet size is scalable to larger sizes.
Citation
Shimaa Ahmed Megahed Soliman, Sherine Ismail Abd El‑Rahman, and Hany Mahmoud Zamel, "Wideband Low RCS Metasurface Conformal Sheet for Stealth Applications," Progress In Electromagnetics Research C, Vol. 162, 94-105, 2025.
doi:10.2528/PIERC25092306
References

1. Sun, Lili, Meng Guo, Yuchen Tong, Ziying Hu, Ping Huang, Xingliang Zhang, and Wei Wang, "Broadband low radar cross section frequency selective surface radome based on phase cancellation and spatial filtering," Microwave and Optical Technology Letters, Vol. 66, No. 10, e34334, 2024.
doi:10.1002/mop.34334

2. Dhabal, Barun, Akhilesh Kumar, Arnab Nandi, and Banani Basu, "Metamaterial-based AMC antenna with reduced RCS and increased bandwidth for wireless X-band applications," International Journal of Communication Systems, Vol. 38, No. 5, e70019, 2025.
doi:10.1002/dac.70019

3. Luadang, Bancha, Chalanthon Ainthachot, Pisit Janpangngern, Khanet Pookkapund, Danai Torrungrueng, Monai Krairiksh, and Chuwong Phongcharoenpanich, "EBG-backed ultrawideband circularly polarized Archimedean spiral antenna scheme for IoT applications," Scientific Reports, Vol. 15, No. 1, 11769, 2025.
doi:10.1038/s41598-025-96381-0

4. Lee, Hakjune and Do-Hoon Kwon, "Microwave metasurface cloaking for freestanding objects," Physical Review Applied, Vol. 17, No. 5, 054012, 2022.
doi:10.1103/physrevapplied.17.054012

5. Liu, Qian, Difei Liang, Xin Yao, Haiyan Chen, Qingting He, Fengxia Li, Linbo Zhang, Tiancheng Han, Liangjun Yin, and Jianliang Xie, "Broadband RCS reduction metasurface based on vortex singularities generated by spin-to-orbital angular momentum conversion," Results in Physics, Vol. 59, 107530, 2024.
doi:10.1016/j.rinp.2024.107530

6. Elineau, Matthieu, Renaud Loison, Stéphane Méric, Raphaël Gillard, Pascal Pagani, Geneviève Mazé-Merceur, and Philippe Pouliguen, "RCS prediction and optimization for anomalous reflection metasurfaces using Floquet analysis," International Journal of Microwave and Wireless Technologies, Vol. 15, No. 6, 966-974, 2023.
doi:10.1017/S1759078722001398

7. Zamel, Hany M., Eman M. Eldesouki, and Ahmed M. Attiya, "Polarization dependent anomalous reflecting metasurface," Optical and Quantum Electronics, Vol. 57, No. 5, 297, 2025.
doi:10.1007/s11082-025-08203-2

8. Zamel, Hany M., Eman M. Eldesouki, and Ahmed M. Attiya, "Design of anomalous reflecting metasurface for communication systems," Scientific Reports, Vol. 15, No. 1, 619, 2025.
doi:10.1038/s41598-024-82993-5

9. Jin, Ren-Hui, Zheng-Gang Yan, Ya-Wen Liu, Wen-Zhong Lu, and Xiao-Chuan Wang, "Wideband function reconfigurable metamaterial for RCS reduction," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 11, 9089-9094, 2023.
doi:10.1109/tap.2023.3313185

10. Narayan, Shiv and Arun Kesavan, Handbook of Metamaterial-Derived Frequency Selective Surfaces, Vol. 3, Springer Nature, 2023.

11. Joy, Vineetha, Alka Dileep, P. V. Abhilash, Raveendranath U. Nair, and Hema Singh, "Metasurfaces for stealth applications: A comprehensive review," Journal of Electronic Materials, Vol. 50, No. 6, 3129-3148, 2021.
doi:10.1007/s11664-021-08927-3

12. Liu, Ying, Yongtao Jia, and Shuxi Gong, Antenna Radar Cross Section: Theory and Design, Springer, 2025.
doi:10.1007/978-981-96-1226-0

13. Lin, Baoqin, Wenzhun Huang, Lintao Lv, Jianxin Guo, Zhe Liu, and Rui Zhu, "An ultra-wideband circular polarization-maintaining metasurface and its application in RCS reduction," IEEE Access, Vol. 9, 103967-103974, 2021.
doi:10.1109/access.2021.3099216

14. Soliman, Shimaa A. M., Eman M. El-Desouki, Shaza M. El-Nady, and Anwer S. Abd El-Hameed, "Broadband low RCS based on polarization-dependent artificial magnetic conductor metasurface," IEEE Access, Vol. 11, 53176-53184, 2023.
doi:10.1109/access.2023.3280126

15. Rangula, Madhusudhan Goud, Princy Paul, Basudev Majumder, and Krishnamoorthy Kandasamy, "An ultra-broadband low profile modified chessboard metasurface with improved backscattering reduction," Optics Communications, Vol. 574, 131213, 2025.
doi:10.1016/j.optcom.2024.131213

16. Wang, Yajin, Jianxun Su, Zengrui Li, Qingxin Guo, and Jiming Song, "A prismatic conformal metasurface for radar cross-sectional reduction," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 4, 631-635, 2020.
doi:10.1109/lawp.2020.2974018

17. Chatterjee, Joysmita, Akhilesh Mohan, and Vivek Dixit, "Ultrawideband RCS reduction of planar and conformal surfaces using ultrathin polarization conversion metasurface," IEEE Access, Vol. 10, 36563-36575, 2022.
doi:10.1109/access.2022.3163850

18. Tiwari, Priyanka, Surya Kumar Pathak, and Varsha Siju, "Design, development and characterization of resistive arm based planar and conformal metasurfaces for RCS reduction," Scientific Reports, Vol. 12, No. 1, 14992, 2022.
doi:10.1038/s41598-022-19075-x

19. Khan, Hamza Asif, Abdul Majeed, Hijab Zahra, Fatima Ghulam Kakepoto, Syed Muzahir Abbas, and Moath Alathbah, "Transparent conformal metasurface absorber for ultrawideband radar cross section reduction," Journal of Physics D: Applied Physics, Vol. 57, No. 13, 135105, 2024.
doi:10.1088/1361-6463/ad1951

20. Yu, Nanfang, Patrice Genevet, Mikhail A. Kats, Francesco Aieta, Jean-Philippe Tetienne, Federico Capasso, and Zeno Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science, Vol. 334, No. 6054, 333-337, 2011.
doi:10.1126/science.1210713

21. Zhang, Wenbo, Ying Liu, Shuxi Gong, Jun Wang, and Yuezhi Jiang, "Wideband RCS reduction of a slot array antenna using phase gradient metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 12, 2193-2197, 2018.
doi:10.1109/lawp.2018.2870863

22. Lin, Bao-qin, Wen-Zhun Huang, Jian-Xin Guo, Yan-Wen Wang, Bai-Gang Huang, and Rui Zhu, "Ultra-wideband RCS reduction achieved by a coding phase gradient metasurface," Plasmonics, Vol. 18, No. 4, 1561-1569, 2023.
doi:10.1007/s11468-023-01876-z

23. Lin, Baoqin, Wenzhun Huang, Jianxin Guo, Zuliang Wang, Baigang Huang, and Kaibo Si, "An ultra-wideband coding phase gradient metasurface for RCS reduction," Electromagnetics, Vol. 43, No. 7, 465-476, 2023.
doi:10.1080/02726343.2023.2265290

24. Lin, Baoqin, Wenzhun Huang, Jianxin Guo, Baigang Huang, Yanwen Wang, Rui Zhu, and Zuliang Wang, "An ultra-wideband phase gradient metasurface for anomalous reflection and RCS reduction," Optics Communications, Vol. 545, 129704, 2023.
doi:10.1016/j.optcom.2023.129704

25. Ullah, Muhammad Ubaid, Tarik Bin Abdul Latef, Mohamadariff Othman, Mousa I. Hussein, Hamad M. Alkhoori, Yoshihide Yamada, Kamilia Kamardin, and Raheela Khalid, "A progression in the techniques of reducing RCS for the targets," Alexandria Engineering Journal, Vol. 100, 153-169, 2024.
doi:10.1016/j.aej.2024.05.001

26. Dong, Guoxiang, Shitao Zhu, Yuchen He, Song Xia, Anxue Zhang, Xiaoyong Wei, and Zhuo Xu, "Radar cross section reduction metasurface based on random phase gradients," Applied Physics B, Vol. 124, No. 11, 222, 2018.
doi:10.1007/s00340-018-7091-x

27. Sarkar, S. and B. Gupta, "Artificial magnetic conductor with self-complementary unit cells having very high angular stability," Electronics Letters, Vol. 56, No. 14, 704-706, 2020.
doi:10.1049/el.2020.1008

28. Mondal, Arnab, Rudranil Bose, Saptarshi Pal, Ardhendu Kundu, and Sayan Sarkar, "A polarization independent artificial magnetic conductor with wide reflection phase bandwidth and good angular stability," 2024 IEEE Calcutta Conference (CALCON), 1-4, Kolkata, India, 2024.
doi:10.1109/CALCON63337.2024.10914346

29. Fu, Changfeng, Lianfu Han, Chao Liu, Zhijie Sun, and Xili Lu, "Dual-band polarization conversion metasurface for RCS reduction," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 5, 3044-3049, 2021.
doi:10.1109/tap.2020.3028148

30. Tiwari, Priyanka, Surya Kumar Pathak, and Varsha Siju, "Development of resistive-ink based planar and conformal metasurfaces for RCS reduction," IEEE Access, Vol. 10, 61472-61483, 2022.
doi:10.1109/access.2022.3181426

31. Fu, Changfeng, Lei Zhang, Lijun Liu, Shaohua Dong, Weijun Yu, and Lianfu Han, "RCS reduction on patterned graphene-based transparent flexible metasurface absorber," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 2, 2005-2010, 2023.
doi:10.1109/tap.2022.3232744

32. Wang, Junpeng, Qizhi Zhao, Feiyan Fu, Kejun Wang, Zhengwei Ye, Sheng Yin, Hua Wang, and Luoxin Wang, "Optimization of wideband RCS reduction via controlled phase and amplitude in metasurface design," Applied Physics A, Vol. 130, No. 4, 220, 2024.
doi:10.1007/s00339-024-07298-w