Vol. 164
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-12-24
Experimental Investigations of Pure Carbon Dioxide Splitting Using a Rod-Electrode-Type Microwave Plasma Source at Atmospheric Pressure
By
Progress In Electromagnetics Research C, Vol. 164, 8-14, 2026
Abstract
The purpose of this study is to experimentally investigate the applicability of a rod-electrode-type microwave plasma source (MPS) for pure carbon dioxide (CO2) splitting at atmospheric pressure. This paper demonstrates that the rod-electrode-type MPS can convert pure CO2 gas into plasma. The CO2 splitting by the CO2 plasma is investigated in terms of the pure CO2 flow rate into the rod-electrode-type MPS and the average transmission power to the rod-electrode-type MPS. In the investigations, the emission spectrum of the CO2 plasma is measured using a spectrometer to observe the dissociation reaction of the CO2 gas, and the exhaust gas after the CO2 plasma generation is analyzed using a mass spectrometer to evaluate the CO2 conversion. As a result, the CO2 conversion decreases with an increase in either the average transmission power to the rod-electrode-type MPS or the CO2 flow rate into the rod-electrode-type MPS. Under the experimental conditions, the highest CO2 conversion and energy efficiency are 6.3% and 3.7% at a specific energy input of 4.9 eV/molecule (equivalent to approximately 19.6 kJ/L), respectively.
Citation
Hidenori Sekiguchi, "Experimental Investigations of Pure Carbon Dioxide Splitting Using a Rod-Electrode-Type Microwave Plasma Source at Atmospheric Pressure," Progress In Electromagnetics Research C, Vol. 164, 8-14, 2026.
doi:10.2528/PIERC25092901
References

1. IPCC, IPCC Special Report on Carbon Dioxide Capture and Storage, Cambridge University Press, 2005.

2. Kim, Changsoo, Chun-Jae Yoo, Hyung-Suk Oh, Byoung Koun Min, and Ung Lee, "Review of carbon dioxide utilization technologies and their potential for industrial application," Journal of CO2 Utilization, Vol. 65, 102239, 2022.
doi:10.1016/j.jcou.2022.102239        Google Scholar

3. Ail, Snehesh Shivananda and S. Dasappa, "Biomass to liquid transportation fuel via Fischer Tropsch synthesis --- Technology review and current scenario," Renewable and Sustainable Energy Reviews, Vol. 58, 267-286, 2016.
doi:10.1016/j.rser.2015.12.143        Google Scholar

4. Van de Loosdrecht, J., F. G. Botes, I. M. Ciobica, A. Ferreira, P. Gibson, D. J. Moodley, A. M. Saib, J. L. Visagie, C. J. Weststrate, and J. W. Niemantsverdriet, "Fischer-tropsch synthesis: Catalysts and chemistry," Comprehensive Inorganic Chemistry II, Vol. 7, 525-557, 2013.
doi:10.1016/B978-0-08-097774-4.00729-4        Google Scholar

5. Lahijani, Pooya, Zainal Alimuddin Zainal, Maedeh Mohammadi, and Abdul Rahman Mohamed, "Conversion of the greenhouse gas CO2 to the fuel gas CO via the Boudouard reaction: A review," Renewable and Sustainable Energy Reviews, Vol. 41, 615-632, 2015.
doi:10.1016/j.rser.2014.08.034        Google Scholar

6. Peng, Jin-Bao, Hui-Qing Geng, and Xiao-Feng Wu, "The chemistry of CO: Carbonylation," Chem, Vol. 5, No. 3, 526-552, 2019.
doi:10.1016/j.chempr.2018.11.006        Google Scholar

7. Snoeckx, Ramses and Annemie Bogaerts, "Plasma technology --- A novel solution for CO2 conversion?," Chemical Society Reviews, Vol. 46, No. 19, 5805-5863, 2017.
doi:10.1039/C6CS00066E        Google Scholar

8. Bogaerts, Annemie and Gabriele Centi, "Plasma technology for CO2 conversion: A personal perspective on prospects and gaps," Frontiers in Energy Research, Vol. 8, 1-23, 2020.
doi:10.3389/fenrg.2020.00111        Google Scholar

9. Bogaerts, Annemie and Erik C. Neyts, "Plasma technology: An emerging technology for energy storage," ACS Energy Letters, Vol. 3, No. 4, 1013-1027, 2018.
doi:10.1021/acsenergylett.8b00184        Google Scholar

10. Qin, Yue, Guanghui Niu, Xu Wang, Daibing Luo, and Yixiang Duan, "Status of CO2 conversion using microwave plasma," Journal of CO2 Utilization, Vol. 28, 283–291, 2018.
doi:10.1016/j.jcou.2018.10.003        Google Scholar

11. Yin, Yongxiang, Tao Yang, Zhikai Li, Edwin Devid, Daniel Auerbach, and Aart W. Kleyn, "CO2 conversion by plasma: How to get efficient CO2 conversion and high energy efficiency," Physical Chemistry Chemical Physics, Vol. 23, No. 13, 7974-7987, 2021.
doi:10.1039/D0CP05275B        Google Scholar

12. Centi, Gabriele, Siglinda Perathoner, and Georgia Papanikolaou, "Plasma assisted CO2 splitting to carbon and oxygen: A concept review analysis," Journal of CO2 Utilization, Vol. 54, 101775, 2021.
doi:10.1016/j.jcou.2021.101775        Google Scholar

13. Fridman, Alexander, Plasma Chemistry, Cambridge University Press, 2008.
doi:10.1017/cbo9780511546075

14. Kiefer, Christian Karl, Rodrigo Antunes, Ante Hecimovic, Arne Meindl, and Ursel Fantz, "CO2 dissociation using a lab-scale microwave plasma torch: An experimental study in view of industrial application," Chemical Engineering Journal, Vol. 481, 148326, 2024.
doi:10.1016/j.cej.2023.148326        Google Scholar

15. Wiegers, Katharina, Andreas Schulz, Matthias Walker, and Günter E. M. Tovar, "Determination of the conversion and efficiency for CO2 in an atmospheric pressure microwave plasma torch," Chemie Ingenieur Technik, Vol. 94, No. 3, 299-308, 2022.
doi:10.1002/cite.202100149        Google Scholar

16. Mitsingas, Constandinos M., Rajavasanth Rajasegar, Stephen Hammack, Hyungrok Do, and Tonghun Lee, "High energy efficiency plasma conversion of CO2 at atmospheric pressure using a direct-coupled microwave plasma system," IEEE Transactions on Plasma Science, Vol. 44, No. 4, 651-656, 2016.
doi:10.1109/tps.2016.2531641        Google Scholar

17. Soldatov, Sergey, Guido Link, Lucas Silberer, Clara Marie Schmedt, Emile Carbone, Federico D’Isa, John Jelonnek, Roland Dittmeyer, and Alexander Navarrete, "Time-resolved optical emission spectroscopy reveals nonequilibrium conditions for CO2 splitting in atmospheric plasma sustained with ultrafast microwave pulsation," ACS Energy Letters, Vol. 6, No. 1, 124-130, 2021.
doi:10.1021/acsenergylett.0c01983        Google Scholar

18. Spencer, L. F. and A. D. Gallimore, "CO2 dissociation in an atmospheric pressure plasma/catalyst system: A study of efficiency," Plasma Sources Science and Technology, Vol. 22, 015019, 2013.
doi:10.1088/0963-0252/22/1/015019        Google Scholar

19. Sekiguchi, Hidenori, "Study on development of rod-electrode-type microwave plasma source at atmospheric pressure," Progress In Electromagnetics Research C, Vol. 160, 113-119, 2025.
doi:10.2528/PIERC25053004        Google Scholar

20. Sekiguchi, Hidenori, "Pure ammonia direct decomposition using rod-electrode-type microwave plasma source," International Journal of Hydrogen Energy, Vol. 57, 1010-1016, 2024.
doi:10.1016/j.ijhydene.2023.12.296        Google Scholar

21. Sekiguchi, Hidenori, "Experimental investigations of plasma-assisted ammonia combustion using rod-electrode-type microwave plasma source," International Journal of Hydrogen Energy, Vol. 65, 66-73, 2024.
doi:10.1016/j.ijhydene.2024.03.370        Google Scholar

22. D’Isa, F. A., E. A. D. Carbone, A. Hecimovic, and U. Fantz, "Performance analysis of a 2.45 GHz microwave plasma torch for CO2 decomposition in gas swirl configuration," Plasma Sources Science and Technology, Vol. 29, No. 10, 105009, 2020.
doi:10.1088/1361-6595/abaa84        Google Scholar

23. Uhm, Han S., Hyoung S. Kwak, and Yong C. Hong, "Carbon dioxide elimination and regeneration of resources in a microwave plasma torch," Environmental Pollution, Vol. 211, 191-197, 2016.
doi:10.1016/j.envpol.2015.12.053        Google Scholar