1. IPCC, IPCC Special Report on Carbon Dioxide Capture and Storage, Cambridge University Press, 2005.
2. Kim, Changsoo, Chun-Jae Yoo, Hyung-Suk Oh, Byoung Koun Min, and Ung Lee, "Review of carbon dioxide utilization technologies and their potential for industrial application," Journal of CO2 Utilization, Vol. 65, 102239, 2022.
doi:10.1016/j.jcou.2022.102239 Google Scholar
3. Ail, Snehesh Shivananda and S. Dasappa, "Biomass to liquid transportation fuel via Fischer Tropsch synthesis --- Technology review and current scenario," Renewable and Sustainable Energy Reviews, Vol. 58, 267-286, 2016.
doi:10.1016/j.rser.2015.12.143 Google Scholar
4. Van de Loosdrecht, J., F. G. Botes, I. M. Ciobica, A. Ferreira, P. Gibson, D. J. Moodley, A. M. Saib, J. L. Visagie, C. J. Weststrate, and J. W. Niemantsverdriet, "Fischer-tropsch synthesis: Catalysts and chemistry," Comprehensive Inorganic Chemistry II, Vol. 7, 525-557, 2013.
doi:10.1016/B978-0-08-097774-4.00729-4 Google Scholar
5. Lahijani, Pooya, Zainal Alimuddin Zainal, Maedeh Mohammadi, and Abdul Rahman Mohamed, "Conversion of the greenhouse gas CO2 to the fuel gas CO via the Boudouard reaction: A review," Renewable and Sustainable Energy Reviews, Vol. 41, 615-632, 2015.
doi:10.1016/j.rser.2014.08.034 Google Scholar
6. Peng, Jin-Bao, Hui-Qing Geng, and Xiao-Feng Wu, "The chemistry of CO: Carbonylation," Chem, Vol. 5, No. 3, 526-552, 2019.
doi:10.1016/j.chempr.2018.11.006 Google Scholar
7. Snoeckx, Ramses and Annemie Bogaerts, "Plasma technology --- A novel solution for CO2 conversion?," Chemical Society Reviews, Vol. 46, No. 19, 5805-5863, 2017.
doi:10.1039/C6CS00066E Google Scholar
8. Bogaerts, Annemie and Gabriele Centi, "Plasma technology for CO2 conversion: A personal perspective on prospects and gaps," Frontiers in Energy Research, Vol. 8, 1-23, 2020.
doi:10.3389/fenrg.2020.00111 Google Scholar
9. Bogaerts, Annemie and Erik C. Neyts, "Plasma technology: An emerging technology for energy storage," ACS Energy Letters, Vol. 3, No. 4, 1013-1027, 2018.
doi:10.1021/acsenergylett.8b00184 Google Scholar
10. Qin, Yue, Guanghui Niu, Xu Wang, Daibing Luo, and Yixiang Duan, "Status of CO2 conversion using microwave plasma," Journal of CO2 Utilization, Vol. 28, 283–291, 2018.
doi:10.1016/j.jcou.2018.10.003 Google Scholar
11. Yin, Yongxiang, Tao Yang, Zhikai Li, Edwin Devid, Daniel Auerbach, and Aart W. Kleyn, "CO2 conversion by plasma: How to get efficient CO2 conversion and high energy efficiency," Physical Chemistry Chemical Physics, Vol. 23, No. 13, 7974-7987, 2021.
doi:10.1039/D0CP05275B Google Scholar
12. Centi, Gabriele, Siglinda Perathoner, and Georgia Papanikolaou, "Plasma assisted CO2 splitting to carbon and oxygen: A concept review analysis," Journal of CO2 Utilization, Vol. 54, 101775, 2021.
doi:10.1016/j.jcou.2021.101775 Google Scholar
13. Fridman, Alexander, Plasma Chemistry, Cambridge University Press, 2008.
doi:10.1017/cbo9780511546075
14. Kiefer, Christian Karl, Rodrigo Antunes, Ante Hecimovic, Arne Meindl, and Ursel Fantz, "CO2 dissociation using a lab-scale microwave plasma torch: An experimental study in view of industrial application," Chemical Engineering Journal, Vol. 481, 148326, 2024.
doi:10.1016/j.cej.2023.148326 Google Scholar
15. Wiegers, Katharina, Andreas Schulz, Matthias Walker, and Günter E. M. Tovar, "Determination of the conversion and efficiency for CO2 in an atmospheric pressure microwave plasma torch," Chemie Ingenieur Technik, Vol. 94, No. 3, 299-308, 2022.
doi:10.1002/cite.202100149 Google Scholar
16. Mitsingas, Constandinos M., Rajavasanth Rajasegar, Stephen Hammack, Hyungrok Do, and Tonghun Lee, "High energy efficiency plasma conversion of CO2 at atmospheric pressure using a direct-coupled microwave plasma system," IEEE Transactions on Plasma Science, Vol. 44, No. 4, 651-656, 2016.
doi:10.1109/tps.2016.2531641 Google Scholar
17. Soldatov, Sergey, Guido Link, Lucas Silberer, Clara Marie Schmedt, Emile Carbone, Federico D’Isa, John Jelonnek, Roland Dittmeyer, and Alexander Navarrete, "Time-resolved optical emission spectroscopy reveals nonequilibrium conditions for CO2 splitting in atmospheric plasma sustained with ultrafast microwave pulsation," ACS Energy Letters, Vol. 6, No. 1, 124-130, 2021.
doi:10.1021/acsenergylett.0c01983 Google Scholar
18. Spencer, L. F. and A. D. Gallimore, "CO2 dissociation in an atmospheric pressure plasma/catalyst system: A study of efficiency," Plasma Sources Science and Technology, Vol. 22, 015019, 2013.
doi:10.1088/0963-0252/22/1/015019 Google Scholar
19. Sekiguchi, Hidenori, "Study on development of rod-electrode-type microwave plasma source at atmospheric pressure," Progress In Electromagnetics Research C, Vol. 160, 113-119, 2025.
doi:10.2528/PIERC25053004 Google Scholar
20. Sekiguchi, Hidenori, "Pure ammonia direct decomposition using rod-electrode-type microwave plasma source," International Journal of Hydrogen Energy, Vol. 57, 1010-1016, 2024.
doi:10.1016/j.ijhydene.2023.12.296 Google Scholar
21. Sekiguchi, Hidenori, "Experimental investigations of plasma-assisted ammonia combustion using rod-electrode-type microwave plasma source," International Journal of Hydrogen Energy, Vol. 65, 66-73, 2024.
doi:10.1016/j.ijhydene.2024.03.370 Google Scholar
22. D’Isa, F. A., E. A. D. Carbone, A. Hecimovic, and U. Fantz, "Performance analysis of a 2.45 GHz microwave plasma torch for CO2 decomposition in gas swirl configuration," Plasma Sources Science and Technology, Vol. 29, No. 10, 105009, 2020.
doi:10.1088/1361-6595/abaa84 Google Scholar
23. Uhm, Han S., Hyoung S. Kwak, and Yong C. Hong, "Carbon dioxide elimination and regeneration of resources in a microwave plasma torch," Environmental Pollution, Vol. 211, 191-197, 2016.
doi:10.1016/j.envpol.2015.12.053 Google Scholar