Vol. 162
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-11-23
New Super-Twisting Fast Integral Terminal Sliding Mode Control for PMSM Considering System Aggregate Disturbances
By
Progress In Electromagnetics Research C, Vol. 162, 121-129, 2025
Abstract
To effectively suppress parameter perturbations, external disturbances, and ensure the stability of the PMSM system under uncertain conditions, this paper proposes a novel fast integral terminal sliding mode composite controller (NFITSMC) for speed-loop of PMSM based on super-twisting integral terminal sliding mode disturbance observer (STITSMO). Firstly, the mathematical model of the PMSM with parameter perturbations and external disturbances is analyzed. Then, the NFITSMC speed-loop controller is designed, where the NFIT sliding mode surface combines proportional, integral, and nonlinear terms, enabling effective suppression of parameter perturbations and external disturbances to ensure system stability under uncertainties. Meanwhile, the adaptive exponential switching reaching law adjusts the convergence speed according to the distance between the system state and the sliding surface, thereby mitigating system chattering. Next, the STITSMO disturbance observer is designed, in which the IT sliding mode surface is combined with a second-order super-twisting control law, allowing dynamic gain adjustment based on error magnitude to achieve global fast convergence of the adaptive nonlinear system. Finally, simulations and experiments validate that the NFITSMC-STITSMO composite controller demonstrates superior performance in finite-time convergence, robustness, chattering suppression, and disturbance rejection, making it suitable for high-performance and high-order PMSM control systems.
Citation
Junqin Liu, Tianle Li, Zhentong Wang, Lin Liu, Feng Deng, Xinchun Jiang, Kaihui Zhao, Xiangfei Li, and Shiyin Gong, "New Super-Twisting Fast Integral Terminal Sliding Mode Control for PMSM Considering System Aggregate Disturbances," Progress In Electromagnetics Research C, Vol. 162, 121-129, 2025.
doi:10.2528/PIERC25093006
References

1. Zhang, Yang, Ping Yang, Chenhui Liu, Sicheng Li, Kun Cao, Ziying Liu, and Zhun Cheng, "Improved model predictive torque control for PMSM based on anti-stagnation particle swarm online parameter identification," Progress In Electromagnetics Research B, Vol. 114, 51-66, 2025.
doi:10.2528/PIERB25052503

2. Zhang, Yang, Chenhui Liu, Sicheng Li, Kun Cao, Yiping Yang, and Zhun Cheng, "No weighting factor PMSM model predictive torque control based on composite sliding mode disturbance observer," Progress In Electromagnetics Research B, Vol. 113, 63-76, 2025.
doi:10.2528/PIERB25052302

3. Han, Lin, Shanshan Wang, Zhonggen Wang, Xiaobing Zhu, and Wenyan Nie, "Design of compensated PLL for position sensorless drives of PMSMs," Progress In Electromagnetics Research C, Vol. 149, 25-35, 2024.
doi:10.2528/pierc24091101

4. Nan, Yu, Lei Wang, Meng Qi, and Zhi Li, "Design of variable boundary layer sliding mode observer for permanent magnet synchronous motor based on fuzzy control," Progress In Electromagnetics Research C, Vol. 154, 119-129, 2025.
doi:10.2528/pierc25013101

5. Li, Xiangfei, Junqin Liu, Yang Yin, and Kaihui Zhao, "Improved super-twisting non-singular fast terminal sliding mode control of interior permanent magnet synchronous motor considering time-varying disturbance of the system," IEEE Access, Vol. 11, 17485-17496, 2023.
doi:10.1109/access.2023.3244190

6. Li, Xiangfei, Junqin Liu, Jian Wang, Kaihui Zhao, Yang Yin, and Lihua Zou, "Sliding mode control for permanent magnet synchronous motor of sensor-less considering time-varying disturbance," Electric Drive for Locomotives, No. 1, 86-96, 2023.
doi:10.13890/j.issn.1000-128X.2023.01.012

7. Li, X. F., J. Q. Liu, Y. Yin, et al. "A sensorless sliding mode ADRC for PMSM with time varying disturbances," Modular Machine Tool & Automatic Manufacturing Technique, No. 8, 78-83, 2023.
doi:10.13462/j.cnki.mmtamt.2023.08.017

8. Gong, S. Y., D. Li, J. Q. Liu, et al. "Improved model-free sliding mode control of super-twisting for PMSM," Modular Machine Tool & Automatic Manufacturing Technique, No. 2, 175-181, 2024 (in Chinese).
doi:10.13462/j.cnki.mmtamt.2024.02.036

9. Liu, Junqin, Yin Yang, Xiangfei Li, Kaihui Zhao, Zhixuan Yi, and Zhou Xin, "Improved model-free continuous super-twisting non-singular fast terminal sliding mode control of IPMSM," IEEE Access, Vol. 11, 85361-85373, 2023.
doi:10.1109/access.2023.3303843

10. He, Yingshen, Kaihui Zhao, Zhixuan Yi, and Yishan Huang, "Improved terminal sliding mode control of PMSM dual-inertia system with acceleration feedback based on finite-time ESO," Progress In Electromagnetics Research M, Vol. 134, 21-30, 2025.
doi:10.2528/pier25040405

11. Wang, Jiaoyang, Renjun Zhou, and Junqin Liu, "New non-singular fast terminal sliding mode control of permanent magnet synchronous motor based on super-twisting sliding mode observer," Progress In Electromagnetics Research C, Vol. 146, 151-162, 2024.
doi:10.2528/pierc24061501

12. Li, Xiangfei, Junqin Liu, Kaihui Zhao, Yang Yin, and Lihua Zou, "An improved model-free sliding mode control algorithm of super-twisting for SPMSM," Progress In Electromagnetics Research C, Vol. 135, 195-210, 2023.
doi:10.2528/pierc23061502

13. Li, Xiangfei, Junqin Liu, Kaihui Zhao, Yang Yin, and Lihua Zou, "Improved non-singular fast terminal sensor-less sliding mode control of IPMSM considering external disturbance and parameter perturbation," Progress In Electromagnetics Research B, Vol. 102, 81-98, 2023.
doi:10.2528/pierb23050202

14. Liu, Junqin, Zhentong Wang, Feng Deng, Kaihui Zhao, and Xiangfei Li, "Continuous high-order sliding mode optimization control of PMSM based on STSMO," Progress In Electromagnetics Research Letters, Vol. 127, 29-37, 2025.
doi:10.2528/PIERL25070101

15. Zhao, Kaihui, Wenchang Liu, Ruirui Zhou, Wangke Dai, Sicheng Wu, Pengqi Qiu, Yang Yin, Ning Jia, Jinwu Yi, and Gang Huang, "Model-free fast integral terminal sliding-mode control method based on improved fast terminal sliding-mode observer for PMSM with unknown disturbances," ISA Transactions, Vol. 143, 572-581, 2023.
doi:10.1016/j.isatra.2023.09.025

16. Zhao, K. H., L. X. Tu, Y. S. He, et al. "Model-free adaptive fast terminal sliding mode control for PMSM based on compact-form dynamic linearization," Power System Protection and Control, 1-12, Aug. 2025 (in Chinese) .

17. Zhao, Kaihui, Jinwu Yi, Wenchang Liu, et al. "A model-free super-twisting fast terminal sliding mode control method for a permanent magnet synchronous motor," Power System Protection and Control, Vol. 51, No. 22, 88-98, 2023 (in Chinese).
doi:10.19783/j.cnki.pspc.230398

18. He, Y. S., K. H. Zhao, L. X. Tu, et al. "Model-free terminal sliding mode control for PMSM two-inertia system based on improved ESMDO," Control Engineering of China, 1-10, early access, Nov. 2025 (in Chinese).
doi:10.14107/j.cnki.kzgc.20250237

19. Jia, Ning, Kaihui Zhao, Yuying Lv, and Xiangfei Li, "Non-singular fast terminal sliding mode control torsional vibration suppression for PM synchronous transmission system of EVs," Progress In Electromagnetics Research M, Vol. 122, 63-72, 2023.
doi:10.2528/pierm23062401

20. Li, X. F., Z. X. Yi, J. Q. Liu, et al. "Deep flux weakening of IPMSM based on feedback super-twisting non-singular fast terminal sliding mode control," Journal of Electronic Measurement and Instrumentation, Vol. 38, No. 11, 132-145, 2024.
doi:10.13382/j.jemi.B2407534

21. Guo, Xin, Shoudao Huang, Kaiyuan Lu, Yu Peng, Haixin Wang, and Junyou Yang, "A fast sliding mode speed controller for PMSM based on new compound reaching law with improved sliding mode observer," IEEE Transactions on Transportation Electrification, Vol. 9, No. 2, 2955-2968, 2023.
doi:10.1109/tte.2022.3213562

22. Li, Xiangfei, Yang Yin, Yang Zhou, Wenchang Liu, and Kaihui Zhao, "The non-singular fast terminal sliding mode control of interior permanent magnet synchronous motor based on deep flux weakening switching point tracking," Energy Engineering, Vol. 120, No. 2, 277-297, 2023.
doi:10.32604/ee.2023.022461