Vol. 163
Latest Volume
All Volumes
PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-12-15
Optimization of a Multi-Function Car-Roof Antenna Using Deep Learning Method
By
Progress In Electromagnetics Research C, Vol. 163, 91-99, 2026
Abstract
This paper presents a dual-band car-roof antenna, which holds potential applications for 5G-MIMO, WLAN and V2X. The proposed antenna is installed within a shark-fin room on the roof of vehicles. The proposed design consists of two parts, the diversity antenna and the main antenna. To mitigate spatially selective fading and ensure coverage, both the diversity and main antennas have omnidirectional radiation patterns in the azimuth plane. To reach a multi-function design, deep learning method is used for optimization based on MATLAB-HFSS-API. Notably, the optimized antenna reaches a compact size of 27 mm × 30 mm × 2 mm. The antenna have two bands (-10 dB), including 3.35-3.75 GHz and 4.76-7.19 GHz, covering China Telecom (3.4-3.5 GHz), China Unicom (3.5-3.6 GHz), China Mobile (4.8-4.9 GHz), WLAN (5.15-5.35 GHz, 5.725-5.850 GHz), unlicensed Wi-Fi (5.850-5.895 GHz), V2X (5.895-5.925 GHz) and Wi-Fi 6E (5.925-7.125 GHz). The full-wave simulation results are in satisfactory consistency with the measured ones.
Citation
Dingwen Tan, Hexue Liu, Bing Xu, Xiaoming Liu, Shuo Yu, and Lu Gan, "Optimization of a Multi-Function Car-Roof Antenna Using Deep Learning Method," Progress In Electromagnetics Research C, Vol. 163, 91-99, 2026.
doi:10.2528/PIERC25100901
References

1. Yang, Fangchun, Shangguang Wang, Jinglin Li, Zhihan Liu, and Qibo Sun, "An overview of internet of vehicles," China Communications, Vol. 11, No. 10, 1-15, Oct. 2014.
doi:10.1109/cc.2014.6969789

2. Ahmed, Rabia and Farooque Hassan Kumbhar, "VC3: A novel vehicular compatibility-based cooperative communication in 5G networks," IEEE Wireless Communications Letters, Vol. 10, No. 6, 1207-1211, Jun. 2021.
doi:10.1109/LWC.2021.3062076

3. Ullah, Hanif, Nithya Gopalakrishnan Nair, Adrian Moore, Chris Nugent, Paul Muschamp, and Maria Cuevas, "5G communication: An overview of vehicle-to-everything, drones, and healthcare use-cases," IEEE Access, Vol. 7, 37251-37268, 2019.
doi:10.1109/access.2019.2905347

4. Masini, Barbara M., Alessandro Bazzi, and Alberto Zanella, "A survey on the roadmap to mandate on board connectivity and enable V2V-based vehicular sensor networks," Sensors, Vol. 18, No. 7, 2207, Jul. 2018.
doi:10.3390/s18072207

5. Mao, Chun-Xu, Steven Gao, Yi Wang, Qi Luo, and Qing-Xin Chu, "A shared-aperture dual-band dual-polarized filtering-antenna-array with improved frequency response," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 4, 1836-1844, Apr. 2017.
doi:10.1109/tap.2017.2670325

6. He, Shan Hong, Wei Shan, Chong Fan, Zhi Chao Mo, Fu Hui Yang, and Jun Hua Chen, "An improved Vivaldi antenna for vehicular wireless communication systems," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1505-1508, 2014.
doi:10.1109/lawp.2014.2343215

7. Wu, Qi, Yahui Zhou, and Shuang Guo, "An L-sleeve L-monopole antenna fitting a shark-fin module for vehicular LTE, WLAN, and car-to-car communications," IEEE Transactions on Vehicular Technology, Vol. 67, No. 8, 7170-7180, Aug. 2018.
doi:10.1109/tvt.2018.2828433

8. Leelaratne, R. and R. Langley, "Multiband PIFA vehicle telematics antennas," IEEE Transactions on Vehicular Technology, Vol. 54, No. 2, 477-485, Mar. 2005.
doi:10.1109/TVT.2004.841535

9. Oh, Kyungjin, Bongjun Kim, and Jaehoon Choi, "Novel integrated GPS/RKES/PCS antenna for vehicular application," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 4, 244-246, Apr. 2005.
doi:10.1109/lmwc.2005.845722

10. Michel, Andrea, Paolo Nepa, Michele Gallo, Ilenia Moro, Andrea Polo Filisan, and Daniel Zamberlan, "Printed wideband antenna for LTE-band automotive applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1245-1248, 2017.
doi:10.1109/lawp.2016.2629619

11. Sreelakshmi, K., Pronami Bora, Mona Mudaliar, Yuvraj Baburao Dhanade, and B. T. P. Madhav, "Linear array Yagi-Uda 5G antenna for vehicular application," International Journal of Engineering & Technology, Vol. 7, No. 1.1, 513-517, 2018.
doi:10.14419/ijet.v7i1.1.10158

12. Hastürkoğlu, Sertan, Mahmoud Almarashli, and Stefan Lindenmeier, "A compact wideband terrestial MIMO-antenna set for 4G, 5G, WLAN and V2X and evaluation of its LTE-performance in an urban region," 2019 13th European Conference on Antennas and Propagation (EuCAP), 1-5, Krakow, Poland, 2019.

13. Chen, Chen, Hao Gan, Hong-Li Peng, Cheng Peng, Guang-Hui Xu, and Jun-Fa Mao, "High performance V2X antennas designed in integrated shark-fin environment," 2020 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, Shanghai, China, 20-23 September 2020.
doi:10.1109/ICMMT49418.2020.9386534

14. Kwon, Oh-Yun, Reem Song, and Byung-Sung Kim, "A fully integrated shark-fin antenna for MIMO-LTE, GPS, WLAN, and WAVE applications," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 4, 600-603, Apr. 2018.
doi:10.1109/lawp.2018.2805681

15. Zhou, Wen-Ying, Zhong-lei Mei, Mai Lu, and Ya-Bo Zhu, "Deep learning for inverse design of broadband quasi-Yagi antenna," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 2023, No. 1, 7819156, Feb. 2023.
doi:10.1155/2023/7819156

16. Sarker, Nayan, Prajoy Podder, M. Rubaiyat Hossain Mondal, Sakib Shahriar Shafin, and Joarder Kamruzzaman, "Applications of machine learning and deep learning in antenna design, optimization, and selection: A review," IEEE Access, Vol. 11, 103890-103915, Sep. 2023.
doi:10.1109/access.2023.3317371

17. Gadhafi, Rida, Abigail Copiaco, Yassine Himeur, Kiyan Afsari, Husameldin Mukhtar, Khalida Ghanem, and Wathiq Mansoor, "Exploring the potential of deep-learning and machine-learning in dual-band antenna design," IEEE Open Journal of the Computer Society, Vol. 5, 566-577, 2024.
doi:10.1109/ojcs.2024.3463190

18. Peng, Fengling and Xing Chen, "An antenna optimization framework based on deep reinforcement learning," IEEE Transactions on Antennas and Propagation, Vol. 72, No. 10, 7594-7605, Oct. 2024.
doi:10.1109/tap.2024.3443411

19. Wu, Duo-Long, Xiao Jian Hu, Jin Hao Chen, Liang Hua Ye, and Jian-Feng Li, "AI deep learning optimization for compact dual-polarized high-isolation antenna using backpropagation algorithm," IEEE Antennas and Wireless Propagation Letters, Vol. 23, No. 2, 898-902, Feb. 2024.
doi:10.1109/lawp.2023.3338360

20. Artner, Gerald, Wim Kotterman, Giovanni Del Galdo, and Matthias A. Hein, "Automotive antenna roof for cooperative connected driving," IEEE Access, Vol. 7, 20083-20090, Feb. 2019.
doi:10.1109/access.2019.2897219

21. Alsath, M. Gulam Nabi and Malathi Kanagasabai, "A shared-aperture multiservice antenna for automotive communications," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1417-1420, Jul. 2014.
doi:10.1109/lawp.2014.2340994

22. Wong, Hang, Kwok Kan So, and Xia Gao, "Bandwidth enhancement of a monopolar patch antenna with V-shaped slot for car-to-car and WLAN communications," IEEE Transactions on Vehicular Technology, Vol. 65, No. 3, 1130-1136, Mar. 2016.
doi:10.1109/tvt.2015.2409886