Vol. 136
Latest Volume
All Volumes
PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2025-12-17
High Gain and Bandwidth Enhanced Microstrip Patch Antenna with Defective Ground Structure Loaded with Metamaterial Unit Cells for Intelligent Transportation Systems
By
Progress In Electromagnetics Research M, Vol. 136, 57-67, 2025
Abstract
In the manuscript a novel design of microstrip patch antenna with moderate degree of complexity is proposed in terms of metamaterial based unit cells as radiating patch on the top as well as metamaterial based periodic structure as defected ground structure at the bottom (MRPMGS) for Intelligent Transportation System (ITS) applications. The novel design of patch antenna exhibited multibands with broad-band transmission patterns, improved high gain and compact structure. The MRPMGS has a three layered structure with overall dimensions of 32 mm × 28 mm × 1.6 mm. The top layer with radiating patch has unit cell(s) with dimensions of 3.6 mm × 3.6 mm, and at the bottom the defective ground structure (DGS) has unit cell(s) with dimensions of 4 mm × 4 mm. The middle layer is of FR4 substrate with 1.6 mm thickness. The MRPMGS has experimental (simulated) transmission frequencies at 11.54 GHz (11.24 GHz), 12.91 GHz (12. 98 GHz), and 13.20 GHz (13.48 GHz) with reflection coefficients of -20.91 dB (-25.16 dB), -26.19 dB (-29.36 dB), and -18.94 dB (-26.02 dB) respectively. The VSWR varies between 1 and 3. The radiation efficiency reaches 80%, and high gain varying between 2.35 and 5.5 is achieved at the desired frequencies.
Citation
Sunil K. Dubey, Ashok Kumar Shankhwar, Nand Kishore, and Alkesh Agrawal, "High Gain and Bandwidth Enhanced Microstrip Patch Antenna with Defective Ground Structure Loaded with Metamaterial Unit Cells for Intelligent Transportation Systems," Progress In Electromagnetics Research M, Vol. 136, 57-67, 2025.
doi:10.2528/PIERM25101001
References

1. Gupta, Samir D. and M. C. Srivastava, "Design of frequency agile multidielectric microstrip antenna for airborne applications," International Journal of Microwave and Optical Technology (IJMOT), Vol. 5, No. 5, 257-266, 2010.

2. Wu, Junyan, Jiaao Yu, and Qin Tao, "Design of a missile-borne conformal microstrip navigation antenna," MATEC Web of Conferences, Vol. 232, 04080, 2018.
doi:10.1051/matecconf/201823204080

3. Chattha, Hassan T., Maria Hanif, Xiaodong Yang, Inam E. Rana, and Qammer H. Abbasi, "Frequency reconfigurable patch antenna for 4G LTE applications," Progress In Electromagnetics Research M, Vol. 69, 1-13, 2018.
doi:10.2528/pierm18022101

4. Khattak, Muhammad Irfan, Amir Sohail, Ubaid Khan, Zaka Barki, and Gunawan Witjaksono, "Elliptical slot circular patch antenna array with dual band behaviour for future 5G mobile communication networks," Progress In Electromagnetics Research C, Vol. 89, 133-147, 2019.
doi:10.2528/pierc18101401

5. Alieldin, Ahmed, Yi Huang, Stephen J. Boyes, and Manoj Stanley, "A reconfigurable broadband dual-mode dual-polarized antenna for sectorial/omnidirectional mobile base stations," Progress In Electromagnetics Research, Vol. 163, 1-13, 2018.
doi:10.2528/pier18050206

6. Zhang, Q., W. Jiang, P. Liu, K. Wei, W. Hu, and S. Gong, "Metamaterial-based linear phased array antenna with improved wide-angle scanning bandwidth by parasitic metal strips," IET Microwaves, Antennas & Propagation, Vol. 15, 1699-1709, 2021.

7. Naik, Ketavath Kumar and Pasumarthi Amala Vijaya Sri, "Design of hexadecagon circular patch antenna with DGS at Ku band for satellite communications," Progress In Electromagnetics Research M, Vol. 63, 163-173, 2018.
doi:10.2528/pierm17092205

8. Saroj, Abhishek Kumar, Mohd Gulman Siddiqui, Mukesh Kumar, and Jamshed Ansari, "Design of multiband quad-rectangular shaped microstrip antenna for wireless applications," Progress In Electromagnetics Research M, Vol. 59, 213-221, 2017.
doi:10.2528/pierm17071003

9. Jabar, Ayia A. S. A. and Dhirgham Kamal Naji, "Design of miniaturized quad-band dual-arm spiral patch antenna for RFID, WLAN and WiMAX applications," Progress In Electromagnetics Research C, Vol. 91, 97-113, 2019.
doi:10.2528/pierc19011706

10. Khajepour, Somayeh, Mohammad Saeid Ghaffarian, and Gholamreza Moradi, "Design of novel multiband folded printed quadrifilar helical antenna for GPS/WLAN applications," Electronics Letters, Vol. 53, No. 2, 58-60, 2017.
doi:10.1049/el.2016.3889

11. Sun, Xin, Gang Zeng, Hong-Chun Yang, Yang Li, Xue-Jie Liao, and Lei Wang, "Design of an edge-fed quad-band slot antenna for GPS/WiMAX/WLAN applications," Progress In Electromagnetics Research Letters, Vol. 28, 111-120, 2012.
doi:10.2528/pierl11080407

12. Yu, Junnan, Yufa Sun, Haoran Zhu, Fan Li, and Yade Fang, "Stacked-patch dual-band & dual-polarized antenna with broadband baluns for WiMAX & WLAN applications," Progress In Electromagnetics Research M, Vol. 68, 41-52, 2018.
doi:10.2528/pierm18022501

13. Liu, Chi-Sheng, Cheng-Nan Chiu, and Sheng-Ming Deng, "A compact disc-slit monopole antenna for mobile devices," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 251-254, 2008.
doi:10.1109/lawp.2008.920751

14. Kishore, Nand, Arun Prakash, and Vijay Shanker Tripathi, "A reconfigurable ultra wide band antenna with defected ground structure for ITS application," AEU --- International Journal of Electronics and Communications, Vol. 72, 210-215, 2017.
doi:10.1016/j.aeue.2016.12.009

15. Kishore, Nand, Gaurav Upadhyay, Vijay Shanker Tripathi, and Arun Prakash, "Dual band rectangular patch antenna array with defected ground structure for ITS application," AEU --- International Journal of Electronics and Communications, Vol. 96, 228-237, 2018.
doi:10.1016/j.aeue.2018.09.039

16. Alqadami, Abdulrahman Shueai Mohsen, Mohd Faizal Jamlos, Imtiaz Islam, Ping Jack Soh, Rizalman Mamat, Khairil Anuar Khairi, and Adam Narbudowicz, "Multi-band antenna array based on double negative metamaterial for multi automotive applications," Progress In Electromagnetics Research, Vol. 159, 27-37, 2017.
doi:10.2528/pier16091203

17. Mishra, Naveen and Raghvendra Kumar Chaudhary, "A compact CPW fed CRR loaded four element metamaterial array antenna for wireless application," Progress In Electromagnetics Research, Vol. 159, 15-26, 2017.
doi:10.2528/pier17021304

18. Weng, Wei-Chung and Chia-Liang Hung, "An H-fractal antenna for multiband applications," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1705-1708, 2014.
doi:10.1109/lawp.2014.2351618

19. Song, Zhi, Shucheng Zhao, Siqi Li, Jiayi Chen, and Yanbing Xue, "High-isolation compact MIMO antenna with distributed metamaterial loading," Progress In Electromagnetics Research M, Vol. 128, 51-59, 2024.
doi:10.2528/pierm24060507

20. Naik, Ketavath Kumar, Gopi Dattatreya, Ramadugu P. S. Chaitanya, Ravikumar Palla, and Sriram Sandhya Rani, "Enhancement of gain with corrugated Y-shaped patch antenna for triple-band applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 3, e21624, 2019.
doi:10.1002/mmce.21624

21. Mood, Yugender and Ramasamy Pandeeswari, "Complementary folded line metamaterial loaded MIMO antenna for S-band applications," Progress In Electromagnetics Research C, Vol. 150, 145-155, 2024.
doi:10.2528/pierc24060604

22. Upadhyay, Gaurav, Nand Kishore, Saurabh Raj, Shivesh Tripathi, and Vijay Shanker Tripathi, "Dual-feed CSRR-loaded switchable multiband microstrip patch antenna for ITS applications," IET Microwaves, Antennas & Propagation, Vol. 12, No. 14, 2135-2140, 2018.
doi:10.1049/iet-map.2018.5269

23. Kakhki, Mehri Borhani and Pejman Rezaei, "Reconfigurable microstrip slot antenna with DGS for UWB applications," International Journal of Microwave & Wireless Technologies, Vol. 9, No. 7, 1517-1522, 2017.
doi:10.1017/s1759078717000034

24. Ziolkowski, Richard W. and Aycan Erentok, "Metamaterial-based efficient electrically small antennas," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 7, 2113-2130, 2006.
doi:10.1109/tap.2006.877179

25. Upadhyay, Kunal K., Alkesh Agrawal, and Mukul Misra, "Wide-band log-periodic microstrip antenna with defected ground structure for C-band applications," Progress In Electromagnetics Research C, Vol. 112, 127-137, 2021.
doi:10.2528/pierc21031106

26. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and µ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509, 1968.
doi:10.1070/PU1968v010n04ABEH003699

27. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

28. Smith, D. R., Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, No. 18, 4184, 2000.
doi:10.1103/physrevlett.84.4184

29. Selvi, Nambiyappan Thamil, Ramasamy Pandeeswari, and Palavesa Nadar Thiruvalar Selvan, "An inset-fed rectangular microstrip patch antenna with multiple split ring resonator loading for WLAN and RF-ID applications," Progress In Electromagnetics Research C, Vol. 81, 41-52, 2018.
doi:10.2528/pierc17110102

30. Hassan, Khan Md. Zobayer, Nantakan Wongkasem, and Heinrich Foltz, "A Ka-band omnidirectional metamaterial-inspired antenna for sensing applications," Sensors, Vol. 25, No. 11, 3545, 2025.
doi:10.3390/s25113545

31. Jackson, D. R. and N. G. Alexopoulos, "Simple approximate formulas for input resistance, bandwidth, and efficiency of a resonant rectangular patch," IEEE Transactions on Antennas and Propagation, Vol. 39, No. 3, 407-410, 1991.
doi:10.1109/8.76341

32. Agrawal, Alkesh, Mukul Misra, and Ashutosh Singh, "Oblique incidence and polarization insensitive multiband metamaterial absorber with quad paired concentric continuous ring resonators," Progress In Electromagnetics Research M, Vol. 60, 33-46, 2017.
doi:10.2528/pierm17061302

33. Tuloti, S. H. Ramazannia, P. Rezaei, and F. Tavakkol Hamedani, "Unit cell with flexible transmission phase slope for ultra-wideband transmitarray antennas," IET Microwaves, Antennas & Propagation, Vol. 13, No. 10, 1522-1528, 2019.
doi:10.1049/iet-map.2018.5288

34. Tuloti, Seyed Hashem Ramazannia, Pejman Rezaei, and Farzad Tavakkol Hamedani, "High-efficient wideband transmitarray antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 5, 817-820, 2018.
doi:10.1109/lawp.2018.2817363

35. Chandrasekhar, Maloth and Ketavath Kumar Naik, "Design a dual-band with CSRR cascaded patch antenna array for wireless communications," Progress In Electromagnetics Research C, Vol. 149, 155-163, 2024.
doi:10.2528/pierc24090602