Vol. 165
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-01-16
An Asymmetric Miniaturized Single-Layer Bandpass Filter Based on Interdigital Capacitors and Microstrip Inductors
By
Progress In Electromagnetics Research C, Vol. 165, 11-17, 2026
Abstract
This paper proposes an asymmetric miniaturized single-layer bandpass filter based on interdigital capacitors and microstrip inductors with miniaturization and a wide bandwidth. It is composed of three series of LC resonator pairs and two parallel LC resonator pairs, and this asymmetric structure enhances design flexibility. The measured results indicate that the center frequency is 1.48 GHz, and the passband covers 0.88~2.08 GHz, with a return loss better than 12.6 dB, whereas the insertion loss is less than 0.58 dB. The physical size is 31 mm × 13 mm, which is smaller than that of traditional LC filters.
Citation
Juntao Cao, Xiaoying Zuo, Mengxin He, Yajian Li, and Jiapei Dong, "An Asymmetric Miniaturized Single-Layer Bandpass Filter Based on Interdigital Capacitors and Microstrip Inductors," Progress In Electromagnetics Research C, Vol. 165, 11-17, 2026.
doi:10.2528/PIERC25101503
References

1. Mu, Ruonan, Yongle Wu, Leidan Pan, Wei Zhao, and Weimin Wang, "A miniaturized low-loss switchable single-and dual-band bandpass filter," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 2023, No. 1, 9025980, 2023.
doi:10.1155/2023/9025980        Google Scholar

2. Zhang, Wei, Y. Wu, Wei-Min Wang, Li-Wei Hao, and Yu-Hao Yang, "A novel single-layer low-cost broadband bandpass filter based on interdigital capacitors and microstrip inductors," Acta Electronica Sinica, Vol. 51, No. 6, 1413-1420, 2023.
doi:10.12263/DZXB.20220344        Google Scholar

3. Yang, Cheng, Chu-Ming Guo, Jie Xu, and Hai-Feng Zhang, "Device design for multitask graphene electromagnetic detection based on second harmonic generation," IEEE Transactions on Microwave Theory and Techniques, Vol. 72, No. 7, 4174-4182, 2024.
doi:10.1109/tmtt.2023.3347528        Google Scholar

4. Yang, Cheng, Chu-Ming Guo, Yu-Xin Wei, and Hai-Feng Zhang, "Electromagnetic detection design in liquid crystals Janus metastructures based on second harmonic generation," IEEE Transactions on Instrumentation and Measurement, Vol. 73, 1-11, 2024.
doi:10.1109/tim.2024.3470953        Google Scholar

5. Zhang, Jun, Mijing Sun, Jin-Xu Xu, Xingchen Yao, Shibin Zhang, Xin Ou, and Xiu Yin Zhang, "Compact wideband high-selectivity bandpass filter based on hybrid design of quasi-lumped-element filtering network and LiNbO3/SiC SAW resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 73, No. 10, 7884-7894, 2025.
doi:10.1109/TMTT.2025.3568452        Google Scholar

6. Zakharov, Alexander V. and Sergii M. Litvintsev, "Lumped-distributed resonators providing N or 2N transmission zeros at real frequencies in bandpass filters without cross and mixed couplings," IEEE Transactions on Microwave Theory and Techniques, Vol. 72, No. 6, 3682-3691, 2024.
doi:10.1109/tmtt.2023.3332260        Google Scholar

7. Zakharov, Alexander V. and Sergii M. Litvintsev, "Lumped-distributed resonators providing multiple transmission zeros in bandpass filters with simple and mixed couplings," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 71, No. 8, 3502-3513, 2024.
doi:10.1109/tcsi.2024.3375961        Google Scholar

8. Liu, Bin, Kun Li, Xiong Chen, Pei-Ling Chi, and Tao Yang, "Synthesis of wideband bandpass filter with cross-coupled or inline topology for direct circuit implementation using lumped elements," IEEE Transactions on Microwave Theory and Techniques, Vol. 72, No. 1, 737-749, 2024.
doi:10.1109/tmtt.2023.3326268        Google Scholar

9. Zeng, Liu-Xing and Fu-Min Lin, "Miniaturized high-performance cube-shaped filter made up of quasi-TM010 mode dielectric-loaded cavities," IEEE Access, Vol. 8, 847-855, 2019.
doi:10.1109/access.2019.2960452        Google Scholar

10. Cho, Junghyun, Yejune Seo, Jihaeng Cho, Kyoung Youl Park, Joongki Park, Hosub Lee, and Sungtek Kahng, "Effective size reduction of the metallic waveguide bandpass filter with metamaterial resonators and its 3D-printed version," Sensors, Vol. 23, No. 3, 1173, 2023.
doi:10.3390/s23031173        Google Scholar

11. Nie, Hui, Bing Lan, Tiancheng Yu, Dongdong Liu, Xiaopeng Yu, Qun Jane Gu, and Zhiwei Xu, "A 1.3-1.7-GHz Q-enhanced resonator-based high-IF bandpass filter with 1.5%-67% tunable fractional bandwidth in 65-nm CMOS process," IEEE Transactions on Microwave Theory and Techniques, Vol. 72, No. 7, 4028-4042, 2024.
doi:10.1109/tmtt.2023.3342627        Google Scholar

12. Wang, Hailong, Ning An, Shunli Li, Hongxin Zhao, and Xiaoxing Yin, "A miniaturized interdigital bandpass filter with capacitors and inductors loading," 2024 IEEE 12th Asia-Pacific Conference on Antennas and Propagation (APCAP), 1-2, Nanjing, China, 2024.
doi:10.1109/APCAP62011.2024.10881525

13. Narayane, Vinay B. and Girish Kumar, "A selective wideband bandpass filter with wide stopband using mixed lumped-distributed circuits," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 69, No. 9, 3764-3768, 2022.
doi:10.1109/tcsii.2022.3173472        Google Scholar

14. Luo, Xun, Sheng Sun, and Robert Bogdan Staszewski, "Tunable bandpass filter with two adjustable transmission poles and compensable coupling," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 9, 2003-2013, 2014.
doi:10.1109/tmtt.2014.2337287        Google Scholar

15. Zhu, Lei, Sheng Sun, and Rui Li, Microwave Bandpass Filters for Wideband Communications, John Wiley & Sons, 2011.
doi:10.1002/9781118197981