Vol. 165
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-01-16 Latest Published
By Juntao Cao Xiaoying Zuo Mengxin He Yajian Li Jiapei Dong
Progress In Electromagnetics Research C, Vol. 165, 11-17, 2026
Abstract
This paper proposes an asymmetric miniaturized single-layer bandpass filter based on interdigital capacitors and microstrip inductors with miniaturization and a wide bandwidth. It is composed of three series of LC resonator pairs and two parallel LC resonator pairs, and this asymmetric structure enhances design flexibility. The measured results indicate that the center frequency is 1.48 GHz, and the passband covers 0.88~2.08 GHz, with a return loss better than 12.6 dB, whereas the insertion loss is less than 0.58 dB. The physical size is 31 mm × 13 mm, which is smaller than that of traditional LC filters.
2026-01-16
PIER C
Vol. 165, 11-17, 2026
download: 35
An Asymmetric Miniaturized Single-Layer Bandpass Filter Based on Interdigital Capacitors and Microstrip Inductors
Juntao Cao, Xiaoying Zuo, Mengxin He, Yajian Li and Jiapei Dong
This paper proposes an asymmetric miniaturized single-layer bandpass filter based on interdigital capacitors and microstrip inductors with miniaturization and a wide bandwidth. It is composed of three series of LC resonator pairs and two parallel LC resonator pairs, and this asymmetric structure enhances design flexibility. The measured results indicate that the center frequency is 1.48 GHz, and the passband covers 0.88~2.08 GHz, with a return loss better than 12.6 dB, whereas the insertion loss is less than 0.58 dB. The physical size is 31 mm × 13 mm, which is smaller than that of traditional LC filters.
An Asymmetric Miniaturized Single-Layer Bandpass Filter Based on Interdigital Capacitors and Microstrip Inductors
2026-01-16
PIER C
Vol. 165, 1-10, 2026
download: 21
Design and Experimental Evaluation of a Compact Half-Shaped Printed-Monopole Antenna with Short Stub for UWB Systems
Nobuyasu Takemura
A compact, half-shaped, planar-monopole antenna optimized for ultra-wideband (UWB) communication systems was proposed, numerically analyzed, and experimentally validated. The proposed antenna is configured as a bell-shaped monopole structure fabricated on an FR-4 dielectric substrate, which is bisected along its axis of symmetry to achieve a reduced footprint. To ensure broadband impedance matching, a short-circuited stub is integrated between the monopole and the ground conductor through a plated via. The antenna dimensions are 30 × 12 × 1.6 mm3, which represent a significant reduction compared with those of conventional UWB monopole antennas. Full-wave electromagnetic simulations demonstrate that the antenna covers the FCC-authorized UWB band of 3.1-10.6 GHz with a voltage standing-wave ratio (VSWR) of ≤ 2. Experimental measurements of properties of a fabricated prototype of the proposed antenna agree well with the simulation results. In addition to the analysis of frequency-domain performance, time-domain analysis is conducted using two identical antennas in both face-to-face and side-by-side arrangements. According to the results of the time-domain analysis, the calculated correlation coefficient between signals received by the proposed antenna is 0.986, which confirms high waveform fidelity. Group-delay analysis of the proposed antenna verified stable temporal characteristics with an average delay of approximately 0.2 ns across the UWB range. These results demonstrate that the proposed antenna is a promising candidate for compact and high-performance integration in short-range, high-speed, wireless-communication devices.
Design and Experimental Evaluation of a Compact Half-shaped Printed-monopole Antenna with Short Stub for UWB Systems