Vol. 165
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-01-25
High-Efficiency Broadband GaN Power Amplifier with Algorithmic Gate-Bias Optimization
By
Progress In Electromagnetics Research C, Vol. 165, 108-117, 2026
Abstract
Achieving simultaneous wideband operation and high output power efficiency remains a major challenge in modern GaN HEMT power amplifier (PA) design, particularly for broadband communications and radar systems. This paper presents a systematic design methodology for a broadband PA that integrates radial-stub (RS)-based bias/matching networks with an algorithmic gate-bias (VGS) optimization, alongside load-pull-derived device termination and compact layout. Starting with theWolfspeed CMPA0530002S GaN HEMT, which features intrinsic broadband stability and an integrated input match, we replace conventional narrowband bias lines with a radial-stub network that ensures broadband bias isolation and low-loss matching. A thorough load-pull study identifies the optimum load impedance for concurrent maximization of power-added efficiency (PAE), gain, and output power. Subsequently, an automated VGS sweep across the full 1.16-1.6 GHz band determines the optimal bias point for broadband and efficiency trade-off. The PA achieves a simulated result of output power of 34.28 dBm , flat gain of approximately 13.28 dB, and a peak PAE of 58.69% in a fractional bandwidth of 37% (1.16-1.6 GHz). A key novelty of this work lies in the proposed algorithmic VGS sweep technique, which enables optimization of broadband efficiency throughout the entire 1.16-1.6 GHz operating band and can be easily extended to other frequency ranges. Unlike conventional bias optimization methods that are limited to a single frequency, the proposed algorithm systematically identifies the optimal gate bias across multiple frequencies to maintain high efficiency and consistent output power over a wide bandwidth. The simulated results confirm that this algorithmic bias optimization approach achieves superior broadband efficiency and stable output performance, providing a scalable and adaptable design methodology for next-generation wireless communication and electronic warfare systems.
Citation
Ahmed Elrefaey, Fathi A. Faragb, Azhar A. Hamdi, and Amir Almslmany, "High-Efficiency Broadband GaN Power Amplifier with Algorithmic Gate-Bias Optimization," Progress In Electromagnetics Research C, Vol. 165, 108-117, 2026.
doi:10.2528/PIERC25111801
References

1. Naik, Gaurang, Jung-Min Park, Jonathan Ashdown, and William Lehr, "Next generation Wi-Fi and 5G NR-U in the 6 GHz bands: Opportunities and challenges," IEEE Access, Vol. 8, 153027-153056, 2020.
doi:10.1109/access.2020.3016036        Google Scholar

2. Mabrok, Mussa, Zahriladha Zakaria, and Nasrullah Saifullah, "Design of wide-band power amplifier based on power combiner technique with low intermodulation distortion," International Journal of Electrical and Computer Engineering (IJECE), Vol. 8, No. 5, 3504-3511, Oct. 2018.
doi:10.11591/ijece.v8i5.pp3504-3511        Google Scholar

3. Erunkulu, Olaonipekun Oluwafemi, Adamu Murtala Zungeru, Caspar K. Lebekwe, Modisa Mosalaosi, and Joseph M. Chuma, "5G mobile communication applications: A survey and comparison of use cases," IEEE Access, Vol. 9, 97251-97295, 2021.
doi:10.1109/access.2021.3093213        Google Scholar

4. Cripps, Steve C., RF Power Amplifiers for Wireless Communications, 2nd Ed., Artech House, Norwood, MA, 2006.

5. Amar, Ahmed S. I., Manish Mamidanna, Mohammad Darwish, and Hadia El-Hennawy, "High gain broadband power amplifier design based on integrated diplexing networks," IEEE Microwave and Wireless Components Letters, Vol. 32, No. 2, 133-136, Feb. 2022.
doi:10.1109/lmwc.2021.3122075        Google Scholar

6. Cai, Qi, Wenquan Che, and Quan Xue, "High-efficiency power amplifier with a multiharmonic tuning network," IEEE Microwave and Wireless Components Letters, Vol. 31, No. 4, 389-392, Apr. 2021.
doi:10.1109/lmwc.2021.3055235        Google Scholar

7. Feng, Wenjie, Wenbin Wu, Xin Yu Zhou, Wenquan Che, and Yongrong Shi, "Broadband high-efficiency quasi-Class-J power amplifier based on nonlinear output capacitance effect," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 69, No. 4, 2091-2095, 2022.
doi:10.1109/tcsii.2022.3141423        Google Scholar

8. Sun, Jia Xing, Feng Lin, Bo Li, Houjun Sun, and Wenhua Chen, "Continuous Class-J/F-1 mode asymmetrical Doherty power amplifier with extended bandwidth and enhanced efficiency," IEEE Transactions on Microwave Theory and Techniques, Vol. 71, No. 11, 4814-4825, Nov. 2023.
doi:10.1109/tmtt.2023.3275177        Google Scholar

9. Sheikhi, Akram, "Historical aspect of load-modulated balanced amplifiers," IEEE Access, Vol. 12, 7974-7986, 2024.
doi:10.1109/access.2024.3351835        Google Scholar

10. Nikandish, Gholamreza, Robert Bogdan Staszewski, and Anding Zhu, "Breaking the bandwidth limit: A review of broadband Doherty power amplifier design for 5G," IEEE Microwave Magazine, Vol. 21, No. 4, 57-75, 2020.
doi:10.1109/mmm.2019.2963607        Google Scholar

11. Mabrok, Mussa, Zahriladha Zakaria, Tole Sutikno, and Ammar Alhegazi, "Wideband power amplifier based on Wilkinson power divider for S-band satellite communications," Bulletin of Electrical Engineering and Informatics, Vol. 8, No. 4, 1531-1536, 2019.
doi:10.11591/eei.v8i4.1552        Google Scholar

12. Boumalkha, Mohamed, Ahmed Gamal Abdellatif, Ahmed S. I. Amar, Mohammed Lahsaini, Amir Almslmany, Shuja Ansari, Mohammed Alammar, and Mahmoud A. Shawky, "Investigating broadband filtering power amplifier using multi-mode resonator-based bandpass filter," Results in Engineering, Vol. 26, 105035, 2025.
doi:10.1016/j.rineng.2025.105035        Google Scholar

13. Sayed, Ahmed, Sebastian Preis, and Georg Boeck, "Efficient technique for ultra broadband, linear power amplifier design," International Journal of Microwave and Wireless Technologies, Vol. 4, No. 6, 559-567, 2012.
doi:10.1017/s1759078712000578        Google Scholar

14. Ćwikliński, Maciej, Christian Friesicke, Peter Brückner, Dirk Schwantuschke, Sandrine Wagner, Roger Lozar, Hermann Maßler, Rüdiger Quay, and Oliver Ambacher, "Full W-band GaN power amplifier MMICs using a novel type of broadband radial stub," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 12, 5664-5675, 2018.
doi:10.1109/tmtt.2018.2878725        Google Scholar

15. Wang, Zhebin and Chan-Wang Park, "Novel wideband GaN HEMT power amplifier using microstrip radial stub to suppress harmonics," 2012 IEEE/MTT-S International Microwave Symposium Digest, 1-3, Montreal, QC, Canada, Jun. 2012.
doi:10.1109/MWSYM.2012.6259464

16. Mustafa, Sajjad Mohanad, Mohsen Hayati, Mehrnaz Khodadoost, Salma Ali Sadeq, Farzin Shama, and Pouya Karami, "Compact microstrip lowpass filter with wide stopband and sharp transition band using radial stub resonator," AEU --- International Journal of Electronics and Communications, Vol. 186, 155468, 2024.
doi:10.1016/j.aeue.2024.155468        Google Scholar

17. Wan, Fayu, Yexiang Xu, and Blaise Ravelo, "Radial stub based negative group delay circuit theory," IET Microwaves, Antennas & Propagation, Vol. 14, No. 6, 515-521, 2020.
doi:10.1049/iet-map.2019.0642        Google Scholar

18. Zhao, Junding, Shuai Wang, Xiaoqing Chen, Wei Lv, Zhe Li, and Hao Jiang, "Miniaturized microstrip branch-line coupler with wideband harmonic suppression using modified radial stub loaded resonators," 2023 15th International Conference on Communication Software and Networks (ICCSN), 358-360, Shenyang, China, Jul. 2023.
doi:10.1109/ICCSN57992.2023.10297401

19. Wang, Zhebin and Chan-Wang Park, "Novel wideband high-efficiency high-power amplifier using microstrip radial stub for 4G communication systems," Microwave and Optical Technology Letters, Vol. 56, No. 6, 1412-1418, Jun. 2014.
doi:10.1002/mop.28369        Google Scholar

20. Vardhan, Sri Harsha, Deepali Pathak, Raja Ramalingam, Manish Mehnde, and Ashudeb Dutta, "Microstrip radial stub based 4W GaN MMIC power amplifier for X-band radar applications," 2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), 1-4, Bhilai, India, Feb. 2021.
doi:10.1109/ICAECT49130.2021.9392405

21. Mohammadi, B., J. Nourinia, Ch. Ghobadi, and A. Valizade, "Design and analysis of the stub and radial-stub loaded resonator band-pass filter with cross-shaped coupled feed-lines for UWB applications," Applied Computational Electromagnetics Society Journal (ACES), Vol. 28, No. 9, 851-857, 2021.        Google Scholar

22. Sharifi, Mohammad and Valiollah Mashayekhi, "Design of a modified Hairpin bandpass filter using embedded radial stubs featuring ultrawide stopband," AEU --- International Journal of Electronics and Communications, Vol. 164, 154624, 2023.
doi:10.1016/j.aeue.2023.154624        Google Scholar

23. Kwon, Hyukjin, Hongwook Lim, and Bongkoo Kang, "Design of 6-18 GHz wideband phase shifters using radial stubs," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 3, 205-207, Mar. 2007.
doi:10.1109/lmwc.2006.890481        Google Scholar

24. Singh, Prashant Kumar, Anjini Kumar Tiwary, and Nisha Gupta, "Design of radial microstrip band pass filter with wide stop-band characteristics for GPS application," Progress In Electromagnetics Research C, Vol. 59, 127-134, 2015.
doi:10.2528/pierc15092001        Google Scholar

25. Nguyen, Duy P., Xuan-Tu Tran, Nguyen L. K. Nguyen, Phat T. Nguyen, and Anh-Vu Pham, "A wideband high efficiency Ka-band MMIC power amplifier for 5G wireless communications," 2019 IEEE International Symposium on Circuits and Systems (ISCAS), 1-5, Sapporo, Japan, May 2019.
doi:10.1109/ISCAS.2019.8702092

26. Mohamed, Eslam N., Ahmed M. Elelimy Abounemra, Mohammad Darwish, and Ayman M. El-Tager, "A generic multidimensional design methodology for highly efficient RF power amplifier with improved linearity," IEEE Transactions on Microwave Theory and Techniques, Vol. 72, No. 11, 6401-6413, 2024.
doi:10.1109/tmtt.2024.3396380        Google Scholar

27. Tan, J., K. S. Yuk, and G. R. Branner, "Design of a high power, wideband power amplifier using AlGaN/GaN HEMT," 2017 IEEE 18th Wireless and Microwave Technology Conference (WAMICON), 1-4, Cocoa Beach, FL, USA, Apr. 2017.
doi:10.1109/WAMICON.2017.7930252

28. Smorynski, Craig, MVT: A Most Valuable Theorem, Springer, 2017.
doi:10.1007/978-3-319-52956-1

29. Kim, Jihoon, "A review of Ku-band GaN HEMT power amplifiers development," Micromachines, Vol. 15, No. 11, 1381, 2024.
doi:10.3390/mi15111381        Google Scholar

30. Pozar, David M., Microwave Engineering, 4th Ed., John Wiley & Sons, Hoboken, NJ, 2012.

31. Boshnakov, Ivan, "Designing power amplifiers using maximum-efficiency lines and constant power contours," High Frequency Electronics, Vol. 18, No. 6, 28-34, Jun. 2019.        Google Scholar

32. Bahl, Inder, Fundamentals of RF and Microwave Transistor Amplifiers, 1st Ed., John Wiley & Sons, Hoboken, NJ, 2009.
doi:10.1002/9780470462348

33. Gonzalez, G., Microwave Transistor Amplifiers: Analysis and Design, 2nd Ed., Prentice Hall, Upper Saddle River, NJ, 1996.

34. Merza, Marwah Ezzulddin and Khalid Khalil Mohamed, "Design and optimization of the GaN HEMT Class-J power amplifier for 2.4 GHz applications," 2024 21st International Multi-Conference on Systems, Signals & Devices (SSD), 509-518, Erbil, Iraq, 2024.
doi:10.1109/SSD61670.2024.10548613

35. Hietakangas, S., J. Typpo, and T. Rahkonen, "Integrated 1.6 GHz, 2W tuned RF power amplifier," 2008 NORCHIP, 176-179, Tallinn, Estonia, 2008.
doi:10.1109/NORCHP.2008.4738306

36. Kim, Woonyun, Ki Seok Yang, Jeonghu Han, Jae Joon Chang, and Chang Ho Lee, "An EDGE/GSM quad-band CMOS power amplifier," IEEE Journal of Solid-State Circuits, Vol. 49, No. 10, 2141-2149, Oct. 2014.
doi:10.1109/jssc.2014.2338873        Google Scholar

37. Refai, Wael Y. and William A. Davis, "A highly efficient linear multimode multiband Class-J power amplifier utilizing GaAs HBT for handset modules," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 8, 3519-3531, 2020.
doi:10.1109/tmtt.2020.3002161        Google Scholar

38. Alizadeh, Amirreza, Saleh Hassanzadehyamchi, Ali Medi, and Sayfe Kiaei, "An X-band Class-J power amplifier with active load modulation to boost drain efficiency," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 67, No. 10, 3364-3377, Oct. 2020.
doi:10.1109/tcsi.2020.2991184        Google Scholar

39. Tang, W., L. Peng, S. Lin, G. Zhang, and Z. Zhang, "A broadband high efficiency Class-J power amplifier for C-band," Microwave Journal, May 2023.        Google Scholar

40. Byeon, Chul-Woo and Joon-Hyung Kim, "2W HBT power amplifier module with dual second harmonic suppression technique," Sensors, Vol. 25, No. 4, 1231, Feb. 2025.
doi:10.3390/s25041231        Google Scholar