Vol. 165
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-01-29
Development of Two Port Koch Geometry Inspired Pentagonal MIMO Antenna for n79 NR 5G Sub-6 GHz Band
By
Progress In Electromagnetics Research C, Vol. 165, 150-160, 2026
Abstract
A two-port coplanar waveguide (CPW) multi input multi output antenna (MIMOA) based on Koch Geometry (KG) with a wide bandwidth and high isolation is proposed in this work. A high frequency structure simulator (HFSS) is used for performance analysis and parametric optimization. Initially, a CPW-fed circular patch was designed, which was further modified using KG, and a single antenna element (SAE) was designed. A two port MIMO layout was further designed using the SAE. The proposed MIMOA is designed with Cross Slot on FR4 substrate, which offers a wide bandwidth of 1110 MHz (3.91-5.02 GHz) and works at 4.16 and 4.69 GHz. It exhibits excellent diversity performance with a Channel Capacity Loss (CCL) < 0.4 bits/s/Hz, Envelope Correlation Coefficient (ECC) < 0.25, Diversity Gain (DG) > 9.7, MEG (1,2) < 1 dB, Total Active Refection Coefficient (TARC) ≈ -20 dB from port 1 to port 2, and isolation of ≈ 20 dB across the band. The proposed MIMOA offers a high radiation efficiency (η) of ≥ 80% across the entire band. The designed MIMOA was fabricated and tested to validate the simulation results. Proposed MIMOA is useful for 5G communication and covers frequency ranging from 3.91 GHz to 5 GHz.
Citation
Ashish Phalswal, Ved Prakash, Sweta Tripathi, and Manish Verma, "Development of Two Port Koch Geometry Inspired Pentagonal MIMO Antenna for n79 NR 5G Sub-6 GHz Band," Progress In Electromagnetics Research C, Vol. 165, 150-160, 2026.
doi:10.2528/PIERC25110702
References

1. Kumar, Ashish, Ashwini Kumar, and Ahmed Jamal Abdullah Al-Gburi, "Development of semi-circular corner cut MIMO antenna for 5G-advanced and 6G automotive wireless applications," Results in Engineering, Vol. 25, 103805, Mar. 2025.
doi:10.1016/j.rineng.2024.103805        Google Scholar

2. Anand, Saurabh and Ashwini Kumar, "Development of two port multilayer MIMO fractal antenna for multiband applications," Engineering Research Express, Vol. 7, No. 1, 015369, Mar. 2025.
doi:10.1088/2631-8695/adbc4a        Google Scholar

3. Irshad Ali, T. K., K. A. Ansal, G. Jagadish Chandran, G. K. Ragesh, and Mathew Sumitha, "MIMO antenna design for wireless communication: A review on design challenges and isolation techniques," 2024 1st International Conference on Trends in Engineering Systems and Technologies (ICTEST), 01-06, Kochi, India, 11-13 April 2024.
doi:10.1109/ICTEST60614.2024.10576148

4. Anand, Saurabh and Ashwini Kumar, "Multilayer wideband three port CPW multi input multi output antenna for C-band and S-band applications," 2024 2nd International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), 1-5, Paralakhemundi Campus, Centurion University of Technology and Management, Odisha., India, 19-21 December 2024.
doi:10.1109/SCOPES64467.2024.10991101

5. Kiriş, Serap and Muharrem Karaaslan, "An easy-to-produce HIS-based MIMO radio altimeter antenna design for aircraft," Aircraft Engineering and Aerospace Technology, Vol. 97, No. 2, 179-189, Jan. 2025.
doi:10.1108/aeat-02-2023-0034        Google Scholar

6. Kumar Biswas, Ashim and Ujjal Chakraborty, "Compact wearable MIMO antenna with improved port isolation for ultra‐wideband applications," IET Microwaves, Antennas & Propagation, Vol. 13, No. 4, 498-504, 2019.
doi:10.1049/iet-map.2018.5599        Google Scholar

7. Suresh, Ankireddy Chandra, Thatiparthi Sreenivasulu Reddy, Boddapati Taraka Phani Madhav, Sudipta Das, Sunil Lavadiya, Abeer D. Algarni, and Walid El-Shafai, "Investigations on stub-based UWB-MIMO antennas to enhance isolation using characteristic mode analysis," Micromachines, Vol. 13, No. 12, 2088, Nov. 2022.
doi:10.3390/mi13122088        Google Scholar

8. Aghoutane, Bilal, Sudipta Das, Mohammed EL Ghzaoui, B. T. P. Madhav, and Hanan El Faylali, "A novel dual band high gain 4-port millimeter wave MIMO antenna array for 28/37 GHz 5G applications," AEU --- International Journal of Electronics and Communications, Vol. 145, 154071, Feb. 2022.
doi:10.1016/j.aeue.2021.154071        Google Scholar

9. Vasu Babu, K., Sudipta Das, Gaurav Varshney, Gorre Naga Jyothi Sree, and Boddapati Taraka Phani Madhav, "A micro-scaled graphene-based tree-shaped wideband printed MIMO antenna for terahertz applications," Journal of Computational Electronics, Vol. 21, No. 1, 289-303, 2022.
doi:10.1007/s10825-021-01831-3        Google Scholar

10. Kumar, Ashwini and Amar Partap Singh Pharwaha, "On the design of wideband Sierpinski carpet fractal antenna for radio navigation and fixed satellite services," 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN), 736-738, Noida, India, 07-08 March 2019.
doi:10.1109/SPIN.2019.8711744

11. Kumar, Ashwini and Amar Partap Singh Pharwaha, "Dual band minkowski fractal antenna for maritime radio navigation services," International Journal of Innovative Technology and Exploring Engineering, Vol. 8, No. 11, 500-505, Sep. 2019.
doi:10.35940/ijitee.k1418.0981119        Google Scholar

12. Nirmal, Sanket, Sumit Kumar, and Richa Chandel, "High isolation compact two port 5G MIMO diversity antenna with asymmetrical feed and partial ground structure," Progress In Electromagnetics Research C, Vol. 136, 23-36, 2023.
doi:10.2528/pierc23042202        Google Scholar

13. Ahmed, Heba, Allam M. Ameen, Ahmed Magdy, Ahmed Nasser, and Mohammed Abo-Zahhad, "A sub-6 GHz two-port crescent MIMO array antenna for 5G applications," Electronics, Vol. 14, No. 3, 411, Jan. 2025.
doi:10.3390/electronics14030411        Google Scholar

14. Liu, Feng, Jiayin Guo, Luyu Zhao, Guan-Long Huang, Yingsong Li, and Yingzeng Yin, "Dual-band metasurface-based decoupling method for two closely packed dual-band antennas," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 1, 552-557, Jan. 2020.
doi:10.1109/tap.2019.2940316        Google Scholar

15. Kumar, P. Surendra and B. Chandra Mohan, "Design of a compact two element MIMO antenna with improved bandwidth and isolation," 2015 International Conference on Microwave, Optical and Communication Engineering (ICMOCE), 389-392, Bhubaneswar, India, 2015.
doi:10.1109/ICMOCE.2015.7489774

16. Pradeep, Pendli, K. Jaya Sankar, and Chandra Sekhar Paidimarry, "Design of a compact wideband two-port MIMO antenna for NR 5G Sub-6 GHz band wireless applications," Wireless Personal Communications, Vol. 138, No. 2, 1193-1210, Sep. 2024.
doi:10.1007/s11277-024-11552-y        Google Scholar

17. Khan, Jalal, Sadiq Ullah, Farooq A. Tahir, Faisel Tubbal, and Raad Raad, "A sub-6 GHz MIMO antenna array for 5G wireless terminals," Electronics, Vol. 10, No. 24, 3062, Dec. 2021.
doi:10.3390/electronics10243062        Google Scholar

18. Wu, Ting, Ming-Jun Wang, and Juan Chen, "Decoupling of MIMO antenna array based on half-mode substrate integrated waveguide with neutralization lines," AEU --- International Journal of Electronics and Communications, Vol. 157, 154416, Dec. 2022.
doi:10.1016/j.aeue.2022.154416        Google Scholar

19. Barani, Imee Ristika Rahmi and Kin-Lu Wong, "Integrated inverted-F and open-slot antennas in the metal-framed smartphone for 2 × 2 LTE LB and 4 × 4 LTE M/HB MIMO operations," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 10, 5004-5012, 2018.
doi:10.1109/TAP.2018.2854191        Google Scholar

20. Sarkar, Debdeep, Kushmanda Saurav, and Kumar Vaibhav Srivastava, "A compact dual band four element MIMO antenna for pattern diversity applications," 2016 IEEE 5th Asia-Pacific Conference on Antennas and Propagation (APCAP), 273-274, Kaohsiung, Taiwan, 26-29 July 2016.
doi:10.1109/APCAP.2016.7843203

21. Rosaline, Imaculate, Arvind Kumar, Prashant Upadhyay, and Abu Hena Murshed, "Four element MIMO antenna systems with decoupling lines for high‐speed 5G wireless data communication," International Journal of Antennas and Propagation, Vol. 2022, No. 1, 9078929, Jun. 2022.
doi:10.1155/2022/9078929        Google Scholar

22. Mohammad Saadh, A. W., Shashank Khangarot, B. V. Sravan, Namratha Aluru, Poonkuzhali Ramaswamy, Tanweer Ali, and Manohara M. M. Pai, "A compact four‐element MIMO antenna for WLAN/WiMAX/satellite applications," International Journal of Communication Systems, Vol. 33, No. 14, e4506, 2020.
doi:10.1002/dac.4506        Google Scholar

23. Saadh, A. W. Mohammad, Poonkuzhali Ramaswamy, and Tanweer Ali, "A CPW fed two and four element antenna with reduced mutual coupling between the antenna elements for wireless applications," Applied Physics A, Vol. 127, No. 2, 88, 2021.
doi:10.1007/s00339-020-04224-8        Google Scholar

24. Bai, Jing, Ruixing Zhi, Wenying Wu, Mengmeng Shangguan, Bingbing Wei, and Gui Liu, "A novel multiband MIMO antenna for TD-LTE and WLAN applications," Progress In Electromagnetics Research Letters, Vol. 74, 131-136, 2018.
doi:10.2528/pierl18021302        Google Scholar

25. Srivastava, Gunjan and Akhilesh Mohan, "Compact eight-port QMSIW cavity-backed MIMO antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 23, No. 12, 4044-4048, 2024.
doi:10.1109/lawp.2024.3414176        Google Scholar

26. Srivastava, Gunjan, Amit Kumar, Akhilesh Mohan, Binod Kumar Kanaujia, Ladislau Matekovits, and Ildiko Peter, "An eight-port frequency reconfigurable MIMO antenna using liquid dielectrics," IEEE Access, Vol. 13, 142938-142947, 2025.
doi:10.1109/access.2025.3594828        Google Scholar

27. Kumar, Amit, Sandeep Rana, Akhilesh Mohan, Gunjan Srivastava, Sachin Kumar, and Kang Wook Kim, "A self-decoupled MIMO patch antenna system for V2X communications," IEEE Access, Vol. 13, 56021-56033, 2025.
doi:10.1109/access.2025.3554151        Google Scholar

28. Srivastava, Gunjan, Vimal Kumar, and Akhilesh Mohan, "Compact 8-port EMSIW MIMO antenna with high isolation for sub-6 GHz communication systems," International Journal of Microwave and Wireless Technologies, Vol. 16, No. 10, 1749-1755, 2024.
doi:10.1017/s1759078725000145        Google Scholar

29. Babu, K. Vasu, Sudipta Das, Syed Samser Ali, Mohammed El Ghzaoui, Boddapati Taraka Phani Madhav, and Shobhit K. Patel, "Broadband sub-6 GHz flower-shaped MIMO antenna with high isolation using theory of characteristic mode analysis (TCMA) for 5G NR bands and WLAN applications," International Journal of Communication Systems, Vol. 36, No. 6, e5442, Apr. 2023.
doi:10.1002/dac.5442        Google Scholar

30. Serghiou, Demos, Mohsen Khalily, Vikrant Singh, Ali Araghi, and Rahim Tafazolli, "Sub-6 GHz dual-band 8 × 8 MIMO antenna for 5G smartphones," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 9, 1546-1550, Sep. 2020.
doi:10.1109/lawp.2020.3008962        Google Scholar

31. Guo, Jingli, Lun Cui, Cheng Li, and Baohua Sun, "Side-edge frame printed eight-port dual-band antenna array for 5G smartphone applications," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 12, 7412-7417, Dec. 2018.
doi:10.1109/tap.2018.2872130        Google Scholar

32. Sun, Libin, Yue Li, Zhijun Zhang, and Hanyang Wang, "Self-decoupled MIMO antenna pair with shared radiator for 5G smartphones," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 5, 3423-3432, May 2020.
doi:10.1109/tap.2019.2963664        Google Scholar

33. Xing, Haoran, Xinyan Wang, Zhenbin Gao, Xing An, Hong-xing Zheng, Mengjun Wang, and Erping Li, "Efficient isolation of an MIMO antenna using defected ground structure," Electronics, Vol. 9, No. 8, 1265, 2020.
doi:10.3390/electronics9081265        Google Scholar

34. Iqbal, Amjad, Omar A. Saraereh, Amal Bouazizi, and Abdul Basir, "Metamaterial-based highly isolated MIMO antenna for portable wireless applications," Electronics, Vol. 7, No. 10, 267, Oct. 2018.
doi:10.3390/electronics7100267        Google Scholar

35. Huang, Jianlin, Guiting Dong, Jing Cai, Han Li, and Gui Liu, "A quad-port dual-band MIMO antenna array for 5G smartphone applications," Electronics, Vol. 10, No. 5, 542, Feb. 2021.
doi:10.3390/electronics10050542        Google Scholar

36. Addepalli, Tathababu, Maragani Satish Kumar, Chandrasekhar Rao Jetti, Naveen Kumar Gollamudi, Bandi Kiran Kumar, and Jayshri Kulkarni, "Fractal loaded, novel, and compact two-and eight-element high diversity MIMO antenna for 5G sub-6 GHz (N77/N78 and N79) and WLAN applications, verified with TCM analysis," Electronics, Vol. 12, No. 4, 952, Feb. 2023.
doi:10.3390/electronics12040952        Google Scholar

37. Balanis, Constantine A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2016.

38. Kumar, Ashwini, Basudha Dewan, Arpit Khandelwal, and Kapil Shrivastava, "On the devolvement of fractal antenna for IoT applications," Engineering Research Express, Vol. 5, No. 3, 035026, 2023.
doi:10.1088/2631-8695/acebb8        Google Scholar

39. Kumar, Ashwini and Amar Partap Singh Pharwaha, "CPW-fed wide band micro-machined fractal antenna with band-notched function," Applied Computational Electromagnetics Society Journal (ACES), Vol. 35, No. 8, 929-935, Aug. 2020.
doi:10.47037/2020.aces.j.350812        Google Scholar

40. Kumar, Ashwini, Ashish Kumar, and Amar Partap Singh Pharwaha, "On the development of super-wideband sierpinski triangular fractal antenna," Wireless Personal Communications, Vol. 134, No. 1, 119-131, 2024.
doi:10.1007/s11277-024-10890-1        Google Scholar

41. Kumar, Ashwini and Amar Partap Singh Pharwaha, "Development of a modified Hilbert curve fractal antenna for multiband applications," IETE Journal of Research, Vol. 68, No. 5, 3597-3606, 2022.
doi:10.1080/03772063.2020.1772126        Google Scholar

42. Cornelius, Rasmus, Adam Narbudowicz, Max J. Ammann, and Dirk Heberling, "Calculating the envelope correlation coefficient directly from spherical modes spectrum," 2017 11th European Conference on Antennas and Propagation (EUCAP), 3003-3006, Paris, France, 19-24 March 2017.
doi:10.23919/EuCAP.2017.7928132

43. El Hadri, Doae, Alia Zakriti, Asmaa Zugari, Mohssine El Ouahabi, and Jamal El Aoufi, "High isolation and ideal correlation using spatial diversity in a compact MIMO antenna for fifth‐generation applications," International Journal of Antennas and Propagation, Vol. 2020, No. 1, 2740920, Jul. 2020.
doi:10.1155/2020/2740920        Google Scholar

44. Abdulkawi, Wazie M., Waqar Ahmad Malik, Sajjad Ur Rehman, Abdul Aziz, Abdel Fattah A. Sheta, and Majeed A. Alkanhal, "Design of a compact dual-band MIMO antenna system with high-diversity gain performance in both frequency bands," Micromachines, Vol. 12, No. 4, 383, 2021.
doi:10.3390/mi12040383        Google Scholar

45. He, Zhengrui and Jie Jin, "Compact quad-port MIMO antenna with ultra-wideband and high isolation," Electronics, Vol. 11, No. 20, 3408, Oct. 2022.
doi:10.3390/electronics11203408        Google Scholar