Vol. 165
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-01-30
Design, Fabrication, and Evaluation of a Dual-Band Linearly Polarized Lamp-Shaped Wearable Antenna for ISM and Public Safety Bands
By
Progress In Electromagnetics Research C, Vol. 165, 172-185, 2026
Abstract
This article describe a linearly polarized lamp-shaped dual-wideband monopole wearable antenna for use in Industrial, Scientific and Medical (ISM), and public safety bands. To compress the antenna, the low current corners of the rectangular patch and the two regular octagons were eliminated. The lamp-shaped antenna of size 0.438λ0 × 0.449λ0 (53.9 × 55 × 1.0 mm3) was engraved on a jeans substrate at a frequency of 2.45 GHz. The antenna is 37.15% smaller (miniaturized) than a traditional rectangular patch antenna (59.7 mm × 78.68 mm) at the same design frequency. The antenna achieves dual widebands (2.17-2.86 GHz) and (4.42-5.06 GHz) with resonance frequencies of 2.45 and 4.70 GHz. At these resonant frequencies, the proposed wearable antenna has gain values of 3.86 dBi and 6.63 dBi and radiation efficiencies of 96.34% and 92.27%. Both the E- and H-planes exhibit bidirectional radiation characteristics. Thus, the proposed wearable antenna is the best for ISM, Wi-Fi, WLAN, Bluetooth, Wi-MAX (2.3 GHz), commercial, governmental, and military applications (4.40-4.99 GHz), hilly and watery rescue operations, radio astronomy services (4.80-4.94 GHz), public safety applications (4.94-4.99 GHz), Internet of Things (IoT), military fixed and mobile communications (4.40 to 4.50 GHz), and telemetry applications such as unmanned vehicles and drones. Finally the detailed electrical equivalent circuit modelling and ON-body and OFF-body Specific absorption Rate (SAR) investigations of the antenna are presented. The SAR values are found within the acceptable limits below 1.6 W/kg for 1g of tissue.
Citation
Shiv Kumar Singh, Atul Varshney, Tanuj Garg, Zahriladha Zakaria, and Ahmed Jamal Abdullah Al-Gburi, "Design, Fabrication, and Evaluation of a Dual-Band Linearly Polarized Lamp-Shaped Wearable Antenna for ISM and Public Safety Bands," Progress In Electromagnetics Research C, Vol. 165, 172-185, 2026.
doi:10.2528/PIERC25112703
References

1. Al-Gburi, Ahmed Jamal Abdullah, Nor Hadzfizah Mohd Radi, Tale Saeidi, Naba Jasim Mohammed, Zahriladha Zakaria, Gouree Shankar Das, Akash Buragohain, and Mohd Muzafar Ismail, "Superconductive and flexible antenna based on a tri-nanocomposite of graphene nanoplatelets, silver, and copper for wearable electronic devices," Journal of Science: Advanced Materials and Devices, Vol. 9, No. 3, 100773, 2024.
doi:10.1016/j.jsamd.2024.100773        Google Scholar

2. Kennedy, Timothy F., Patrick W. Fink, Andrew W. Chu, Nathan J. Champagne, Gregory Y. Lin, and Michael A. Khayat, "Body-worn E-textile antennas: The good, the low-mass, and the conformal," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 4, 910-918, 2009.
doi:10.1109/tap.2009.2014602        Google Scholar

3. Bai, Qiang and Richard Langley, "Crumpling of PIFA textile antenna," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 63-70, 2012.
doi:10.1109/tap.2011.2167944        Google Scholar

4. Al-Gburi, Ahmed Jamal Abdullah, Mohd Muzafar Ismail, Naba Jasim Mohammed, and Thamer A. H. Alghamdi, "SAR flexible antenna advancements: Highly conductive polymer-graphene oxide-silver nanocomposites," Progress In Electromagnetics Research M, Vol. 127, 23-30, 2024.
doi:10.2528/pierm24011202        Google Scholar

5. Huang, Jian-Syuan, Tong-Yang Jiang, Zhi-Xiang Wang, Sheng-Wei Wu, and Yen-Sheng Chen, "A novel textile antenna using composite multifilament conductive threads for smart clothing applications," Microwave and Optical Technology Letters, Vol. 58, No. 5, 1232-1236, 2016.
doi:10.1002/mop.29771        Google Scholar

6. Hu, Xiaomu, Sen Yan, and Guy A. E. Vandenbosch, "Wearable button antenna for dual-band WLAN applications with combined on and off-body radiation patterns," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 3, 1384-1387, 2017.
doi:10.1109/tap.2017.2653768        Google Scholar

7. Agneessens, Sam, Sam Lemey, Thomas Vervust, and Hendrik Rogier, "Wearable, small, and robust: The circular quarter-mode textile antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1482-1485, 2015.
doi:10.1109/lawp.2015.2389630        Google Scholar

8. Al-Gburi, Ahmed Jamal Abdullah, Mohd Muzafar Ismail, Naba Jasim Mohammed, Akash Buragohain, and Khaled Alhassoon, "Electrical conductivity and morphological observation of hybrid filler: Silver-graphene oxide nanocomposites for wearable antenna," Optical Materials, Vol. 148, 114882, 2024.
doi:10.1016/j.optmat.2024.114882        Google Scholar

9. Hariharasudhan, K. and Runa Kumari, "Metasurface loaded patch antenna for Wi-Fi applications," 2019 TEQIP III Sponsored International Conference on Microwave Integrated Circuits, Photonics and Wireless Networks (IMICPW), 321-323, Tiruchirappalli, India, 2019.
doi:10.1109/IMICPW.2019.8933224

10. Karimah, Sarah, Fitri Yuli Zulkifli, Basari, and Eko Tjipto Rahardjo, "Antenna design for femtocell LTE at frequency 2.3–2.4 GHz," 2014 Makassar International Conference on Electrical Engineering and Informatics (MICEEI), 50-53, Makassar, Indonesia, 2014.
doi:10.1109/MICEEI.2014.7067309

11. Saravanan, M. and M. J. S. Rangachar, "A narrowband corner slot patch antenna for 2.4 GHz wireless radio communications," International Journal of Engineering and Technology, Vol. 8, No. 5, 2149-2153, 2016.
doi:10.21817/ijet/2016/v8i5/160805434        Google Scholar

12. Palandöken, M., C. Baytöre, and A. Kaya, "Compact WLAN monopole antenna with L-shaped strip line and spiral line loaded ring resonator," Proceedings of the 2nd World Congress on Electrical Engineering and Computer Systems and Science (EECSS'16), EEE 139-1-EEE 139-6, Budapest, Hungary, 2016.
doi:10.11159/eee16.139

13. Yadav, Nagendra Prasad, "A four element antenna array for amateur radio applications," National Journal of Antennas and Propagation, Vol. 1, No. 1, 13-16, 2019.
doi:10.31838/NJAP/01.01.04        Google Scholar

14. Samsuzzaman, Md., Norbahiah Misran, M. Tarikul Islam, M. R. I. Faruque, and Mohammad Tariqul Islam, "Right hand circularly polarized 2.40 GHz truncated corner patch antenna for small satellite application," Journal of Optoelectronics and Advanced Materials, Vol. 21, No. 9-10, 570-576, 2019.        Google Scholar

15. Balanis, Constantine A., Antenna Theory: Analysis and Design, 2nd Ed., John Wiley & Sons, 1997.

16. Nurhayati, Nurhayati, Agam Nizar Dwi Nur Fahmi, Pradini Puspitaningayu, Oce Wiriawan, Brian Raafi'u, Fitri Adi Iskandarianto, Ahmed Jamal Abdullah Al-Gburi, Atul Kumar Varshney, and Safpbri Johari, "Wearable wideband textile coplanar Vivaldi antenna for medical and IoT application," Progress In Electromagnetics Research C, Vol. 148, 145-156, 2024.
doi:10.2528/PIERC24080402

17. Varshney, Atul, Vipul Sharma, T. Mary Neebha, and N. Prasanthi Kumari, "Notch-band eliminator wideband CSRR loaded monopole fractal antenna for ISM and PCS communications," World Journal of Engineering, Vol. 21, No. 4, 821-834, 2024.
doi:10.1108/wje-08-2022-0333        Google Scholar

18. Varshney, Atul, Nishigandha Cholake, and Vipul Sharma, "Low-cost ELC-UWB fan-shaped antenna using parasitic SRR triplet for ISM band and PCS applications," International Journal of Electronics Letters, Vol. 10, No. 4, 391-402, 2022.
doi:10.1080/21681724.2021.1966655        Google Scholar

19. Varshney, Atul, T. Mary Neebha, Vipul Sharma, J. Grace Jency, and A. Diana Andrushia, "Dodecagon-shaped frequency reconfigurable antenna practically loaded with 3-delta structures for ISM band and wireless applications," IETE Journal of Research, Vol. 69, No. 11, 7747-7759, 2023.
doi:10.1080/03772063.2022.2034536        Google Scholar

20. Purohit, Sweety and Falguni Raval, "Wearable-textile patch antenna using jeans as substrate at 2.45 GHz," International Journal of Engineering Research & Technology (IJERT), Vol. 3, No. 5, 2456-2460, 2014.        Google Scholar

21. Wang, Kai-Hong and Jiu-Sheng Li, "Jeans textile antenna for smart wearable antenna," 2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE), 1-3, Hangzhou, China, 2018.
doi:10.1109/ISAPE.2018.8634337

22. Zerith M., Abi T. and M. Nesasudha, "A compact wearable 2.45 GHz antenna for WBAN applications," 2020 5th International Conference on Devices, Circuits and Systems (ICDCS), 184-187, Coimbatore, India, 2020.
doi:10.1109/ICDCS48716.2020.243577

23. Singer, Andy, "Applications and antenna selection in the 4.9 GHz band," Microwave Journal, Vol. 50, No. 10, 136-144, 2007.        Google Scholar

24. Varshney, Atul, "High-gain miniaturized reduced electrical length circular quasi-fractal antenna for U-band and mm-wave (5G-advanced and 6G) communications," Discover Electronics, Vol. 2, No. 1, 90, 2025.
doi:10.1007/s44291-025-00134-2        Google Scholar

25. Zebiri, Chemseddine, Samira Mekki, Djamel Sayad, Issa Elfergani, Mohamed Lamine Bouknia, Rami Zegadi, Atul Varshney, and Jonathan Rodriguez, "Low SAR-UWB rectangular microstrip magnetic monopole antenna for S-band and biomedical applications," Applied Computational Electromagnetics Society Journal (ACES), Vol. 40, No. 3, 212-225, 2025.
doi:10.13052/2024.aces.j.400306        Google Scholar

26. Ouyang, Yuehui and William J. Chappell, "High frequency properties of electro-textiles for wearable antenna applications," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 2, 381-389, 2008.
doi:10.1109/tap.2007.915435        Google Scholar

27. Yang, Li, Lara J. Martin, Daniela Staiculescu, C. P. Wong, and Manos M. Tentzeris, "Conformal magnetic composite RFID for wearable RF and bio-monitoring applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 12, 3223-3230, 2008.
doi:10.1109/tmtt.2008.2006810        Google Scholar

28. Roy, Sourav, Soumendu Ghosh, Soumya Sundar Pattanayak, and Ujjal Chakarborty, "Dual‐polarized textile‐based two/four element MIMO antenna with improved isolation for dual wideband application," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 9, e22292, May 2020.
doi:10.1002/mmce.22292        Google Scholar

29. Thereja, B. L., "Basic electrical engineering," Electrical Technology, Vol. 1, TMH 2020.        Google Scholar

30. Varshney, Atul, Duygu Nazan Genccodhlan, Issa Elfergani, Jonathan Rodriguez, Chemseddine Zebiri, and T. Mary Neebha, "Characterizations of effective parameters and circuit modeling of U-coupled hybrid ring resonator band pass filter," IEEE Access, Vol. 13, 2529-2545, 2024.
doi:10.1109/access.2024.3523440        Google Scholar

31. Varshney, A., V. Sharma, and A. Srivastava, "A novel simplified equivalent modeling method for microstrip line interconnects," Indian Patent-202111019468, 2021.

32. Varshney, Atul, Vipul Sharma, Issa Elfergani, Chemseddine Zebiri, Zoran Vujicic, and Jonathan Rodriguez, "An inline V-band WR-15 transition using antipodal dipole antenna as RF energy launcher @ 60 GHz for satellite applications," Electronics, Vol. 11, No. 23, 3860, 2022.
doi:10.3390/electronics11233860        Google Scholar

33. Varshney, Atul, "Novel mutually-coupled with microstrip glass fed circular ring antenna for Wi-Fi WLAN and ISM band applications," International Journal of Electronics Letters, Vol. 13, No. 3, 331-347, 2025.
doi:10.1080/21681724.2025.2487795        Google Scholar

34. Duan, Zhu, Yong-Xin Guo, Rui-Feng Xue, Minkyu Je, and Dim-Lee Kwong, "Differentially fed dual-band implantable antenna for biomedical applications," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 12, 5587-5595, 2012.
doi:10.1109/tap.2012.2209197        Google Scholar

35. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Physics in Medicine & Biology, Vol. 41, No. 11, 2271, 1996.
doi:10.1088/0031-9155/41/11/003        Google Scholar

36. Shah, S. M., N. F. A. Kadir, Z. Z. Abidin, F. C. Seman, S. A. Hamzah, and N. Katiran, "A 2.45 GHz semi-flexible wearable antenna for industrial, scientific and medical band applications," Indonesian Journal of Electrical Engineering and Computer Science, Vol. 15, No. 2, 814-822, 2019.
doi:10.11591/ijeecs.v15.i2.pp814-822        Google Scholar

37. Shah, S. M., A. A. Rosman, M. A. Z. A. Rashid, Z. Z. Abidin, F. C. Seman, H. A. Majid, S. H. Dahlan, S. A. Hamzah, N. Katiran, A. Ponniran, F. Hassan, and F. Zubir, "A compact dual-band semi-flexible antenna at 2.45 GHz and 5.8 GHz for wearable applications," Bulletin of Electrical Engineering and Informatics, Vol. 10, No. 3, 1739-1746, 2021.
doi:10.11591/eei.v10i3.2262        Google Scholar

38. Ghodake, Asha and Balaji Hogade, "ISM band 2.4 GHz wearable textile antenna for glucose level monitoring," International Journal of Electrical and Electronics Research (IJEER), Vol. 11, No. 1, 39-43, 2023.
doi:10.37391/ijeer.110106        Google Scholar

39. Mukherjee, Nibedita, Ardhendu Kundu, Bhaskar Gupta, and Monojit Mitra, "Specific absorption rate estimation for a typical hibiscus flower model as per ICNIRP electromagnetic guidelines," 2020 IEEE Calcutta Conference (CALCON), 240-243, Kolkata, India, 2020.
doi:10.1109/CALCON49167.2020.9106570