Vol. 165
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-01-23
An Improved Equivalent-Input-Disturbance Method Based on Enhanced Estimators for Wideband Disturbance Suppression in PMSM
By
Progress In Electromagnetics Research C, Vol. 165, 79-88, 2026
Abstract
This paper presents an improved equivalent-input-disturbance (IEID) method based on enhanced estimators. This method addresses the degradation performance in a permanent magnet synchronous motor (PMSM) drive system caused by multi-source disturbances in different frequency bands. First, a PMSM model is established that considers these disturbances and categorizes them as control inputs for both current and speed-loops. Next, the estimated compensation structures of the dual-loop equivalent-input-disturbance (EID) are designed. To address the differing sensitivities of the dual-loop anti-disturbance frequency bands, enhanced estimators are designed to expand their respective bandwidths. This reduces the sensitivity of the system to uncertainty, and parameter-adjusting conditions are derived to ensure stability. Finally, the simulation results demonstrate that, when PMSM operates under the nominal condition, the IEID method suppresses steady-state speed fluctuation by approximately 63% compared to the method without EID compensation, by approximately 35% compared to the conventional EID method, and by approximately 25% compared to improved sliding mode observer-based EID (ISMO-EID) method; when PMSM parameters are perturbed, the suppression rates can further reach to 65%, 44%, and 32%, respectively. The findings indicate that the proposed method exhibits superior steady-state tracking accuracy and disturbance suppression performance, while also exhibiting enhanced robustness in transient scenarios.
Citation
Jiacheng Tong, Kaihui Zhao, Yunzhen Chen, Jinnan Cao, Youzhuo Duan, and Jie Xiong, "An Improved Equivalent-Input-Disturbance Method Based on Enhanced Estimators for Wideband Disturbance Suppression in PMSM," Progress In Electromagnetics Research C, Vol. 165, 79-88, 2026.
doi:10.2528/PIERC25110401
References

1. Yang, Jun, Wen-Hua Chen, Shihua Li, Lei Guo, and Yunda Yan, "Disturbance/uncertainty estimation and attenuation techniques in PMSM drives --- A survey," IEEE Transactions on Industrial Electronics, Vol. 64, No. 4, 3273-3285, 2017.
doi:10.1109/tie.2016.2583412        Google Scholar

2. Wei, Qi, Lieyi Dong, Wanyou Li, Mauro Andriollo, and Depeng Zeng, "Comparative analysis of electromagnetic vibration and torque ripple of multi-unit PMSMs under normal and fault operation," IEEE Transactions on Magnetics, Vol. 61, No. 9, 1-6, 2025.
doi:10.1109/tmag.2025.3553749        Google Scholar

3. Cheng, Ming, Zhiyuan Xu, Yang Jiang, and Chenchen Zhao, "Investigation of cogging torque generation mechanisms in flux-switching permanent magnet machines based on general air-gap field modulation theory," Chinese Journal of Electrical Engineering, Vol. 11, No. 2, 207-215, 2025.
doi:10.23919/cjee.2025.000135        Google Scholar

4. Hu, Mingjin, Wei Hua, Zheng Wu, Ningyi Dai, Huafeng Xiao, and Wei Wang, "Compensation of current measurement offset error for permanent magnet synchronous machines," IEEE Transactions on Power Electronics, Vol. 35, No. 10, 11119-11128, 2020.
doi:10.1109/tpel.2020.2978230        Google Scholar

5. Kim, Sam-Young, Wootaik Lee, Min-Sik Rho, and Seung-Yub Park, "Effective dead-time compensation using a simple vectorial disturbance estimator in PMSM drives," IEEE Transactions on Industrial Electronics, Vol. 57, No. 5, 1609-1614, 2010.
doi:10.1109/tie.2009.2033098        Google Scholar

6. Dorrell, David G., Jonathan K. H. Shek, Markus A. Mueller, and Min-Fu Hsieh, "Damper windings in induction machines for reduction of unbalanced magnetic pull and bearing wear," IEEE Transactions on Industry Applications, Vol. 49, No. 5, 2206-2216, 2013.
doi:10.1109/tia.2013.2262033        Google Scholar

7. Zhang, Jianyi, Wei Ren, and Xi-Ming Sun, "Current-constrained adaptive robust control for uncertain PMSM drive systems: Theory and experimentation," IEEE Transactions on Transportation Electrification, Vol. 9, No. 3, 4158-4169, 2023.
doi:10.1109/tte.2023.3236431        Google Scholar

8. Zhang, Zhang, Xiaodong Yang, Weiyu Wang, Kaiwen Chen, Norbert Chow Cheung, and Jianfei Pan, "Enhanced sliding mode control for PMSM speed drive systems using a novel adaptive sliding mode reaching law based on exponential function," IEEE Transactions on Industrial Electronics, Vol. 71, No. 10, 11978-11988, 2024.
doi:10.1109/tie.2023.3347845        Google Scholar

9. Wu, Ze-Hao, Hua-Cheng Zhou, Feiqi Deng, and Bao-Zhu Guo, "Disturbance observer-based boundary control for an antistable stochastic heat equation with unknown disturbance," IEEE Transactions on Automatic Control, Vol. 68, No. 6, 3604-3611, 2023.
doi:10.1109/tac.2022.3191390        Google Scholar

10. Cao, Haiyang, Yongting Deng, Yuefei Zuo, Xiufeng Liu, Jianli Wang, and Christopher H. T. Lee, "A variable structure ADRC for enhanced disturbance rejection and improved noise suppression of PMSM speed system," IEEE Transactions on Industrial Electronics, Vol. 72, No. 5, 4481-4495, 2025.
doi:10.1109/tie.2024.3468613        Google Scholar

11. She, Jin-Hua, Xin Xin, and Yaodong Pan, "Equivalent-input-disturbance approach --- Analysis and application to disturbance rejection in dual-stage feed drive control system," IEEE/ASME Transactions on Mechatronics, Vol. 16, No. 2, 330-340, 2011.
doi:10.1109/tmech.2010.2043258        Google Scholar

12. She, Jin-Hua, Mingxing Fang, Yasuhiro Ohyama, Hiroshi Hashimoto, and Min Wu, "Improving disturbance-rejection performance based on an equivalent-input-disturbance approach," IEEE Transactions on Industrial Electronics, Vol. 55, No. 1, 380-389, 2008.
doi:10.1109/tie.2007.905976        Google Scholar

13. Du, Youwu, Weihua Cao, Jinhua She, Min Wu, Mingxing Fang, and Seiichi Kawata, "Disturbance rejection and robustness of improved equivalent-input-disturbance-based system," IEEE Transactions on Cybernetics, Vol. 52, No. 8, 8537-8546, 2022.
doi:10.1109/tcyb.2021.3053597        Google Scholar

14. Stein, G., "Respect the unstable," IEEE Control Systems Magazine, Vol. 23, No. 4, 12-25, 2003.
doi:10.1109/MCS.2003.1213600        Google Scholar

15. Zhou, Kemin and John Comstock Doyle, Essentials of Robust Control, Prentice Hall, Upper Saddle River, NJ, 1998.

16. Huang, Gang, Jiajun Li, Edwardo F. Fukushima, Changfan Zhang, Jing He, and Kaihui Zhao, "An improved equivalent-input-disturbance approach for PMSM drive with demagnetization fault," ISA Transactions, Vol. 105, 120-128, 2020.
doi:10.1016/j.isatra.2020.06.010        Google Scholar