Vol. 165
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-02-01
Propagation of Electromagnetic Wave in 1D Perfect Periodic Parallel Waveguides and Resonators Using Transfer Matrix Method
By
Progress In Electromagnetics Research C, Vol. 165, 221-227, 2026
Abstract
The results of the propagation of electromagnetic waves in 1D periodic photonic waveguides and resonators are presented in this study. This structure consists of periodically arranged cells, with each cell containing parallel and series segments, grafted by two resonators at two different sites. This system creates passbands separated by photonic bandgaps, in which electromagnetic waves cannot propagate. The analytical calculation is based on the transfer matrix method (TMM), which aims to calculate the dispersion relation and transmission rate. Our results indicate the importance of the resonator length in applications such as guiding and filtering electromagnetic waves. This study also demonstrates how the addition of cells and the adjustment of resonator lengths influence the frequency selectivity, which is essential for filtering in communication technologies.
Citation
Moulay Said Khattab, Tarik Touiss, and Driss Bria, "Propagation of Electromagnetic Wave in 1D Perfect Periodic Parallel Waveguides and Resonators Using Transfer Matrix Method," Progress In Electromagnetics Research C, Vol. 165, 221-227, 2026.
doi:10.2528/PIERC25121701
References

1. Du, Fang, Yan-Qing Lu, and Shin-Tson Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Applied Physics Letters, Vol. 85, No. 12, 2181-2183, 2004.
doi:10.1063/1.1796533        Google Scholar

2. Mao, Qiuping, Kang Xie, Lei Hu, Qian Li, Wei Zhang, Haiming Jiang, Zhijia Hu, and Erlei Wang, "Light confinement at a dirac point in honeycomb-like lattice photonic crystal," Optics Communications, Vol. 384, 11-15, 2017.
doi:10.1016/j.optcom.2016.10.003        Google Scholar

3. Bouzidi, A., D. Bria, A. Akjouj, Y. Pennec, and B. Djafari-Rouhani, "A tiny gas-sensor system based on 1D photonic crystal," Journal of Physics D: Applied Physics, Vol. 48, No. 49, 495102, 2015.
doi:10.1088/0022-3727/48/49/495102        Google Scholar

4. Ben-Ali, Y., A. Ghadban, Z. Tahri, K. Ghoumid, and D. Bria, "Accordable filters by defect modes in single and double negative star waveguides grafted dedicated to electromagnetic communications applications," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 4, 539-558, 2020.
doi:10.1080/09205071.2020.1724830        Google Scholar

5. Cocoletzi, Gregorio H., L. Dobrzynski, B. Djafari-Rouhani, H. Al-Wahsh, and D. Bria, "Electromagnetic wave propagation in quasi-one-dimensional comb-like structures made upof dissipative negative-phase-velocity materials," Journal of Physics: Condensed Matter, Vol. 18, No. 15, 3683, 2006.
doi:10.1088/0953-8984/18/15/014        Google Scholar

6. Yablonovitch, Eli, "Inhibited spontaneous emission in solid-state physics and electronics," Physical Review Letters, Vol. 58, No. 20, 2059, 1987.
doi:10.1103/physrevlett.58.2059        Google Scholar

7. John, Sajeev, "Strong localization of photons in certain disordered dielectric superlattices," Physical Review Letters, Vol. 58, No. 23, 2486, 1987.
doi:10.1103/physrevlett.58.2486        Google Scholar

8. Notomi, Masaya, "Manipulating light with strongly modulated photonic crystals," Reports on Progress in Physics, Vol. 73, No. 9, 096501, 2010.
doi:10.1088/0034-4885/73/9/096501        Google Scholar

9. Soukoulis, Costas M., Photonic Crystals and Light Localization in the 21st Century, Vol. 563, Springer Science & Business Media, 2012.

10. Antraoui, Ilyas and Ali Khettabi, "Properties of defect modes in a finite periodic structure with branched open resonators," Materials Today: Proceedings, Vol. 27, 3132-3138, 2020.
doi:10.1016/j.matpr.2020.04.012        Google Scholar

11. El Kadmiri, I., Y. Ben-Ali, A. Ouariach, A. Khaled, and D. Bria, "Double frequency filtering in one dimensional comb-like phononic structure containing a segment defect," Advances in Integrated Design and Production (CPI 2019), A. Saka, et al. (eds.), Lecture Notes in Mechanical Engineering, Springer, Cham, 2021.
doi:https://doi.org/10.1007/978-3-030-62199-5_2

12. Ben-Ali, Y., Z. Tahri, F. Falyouni, and D. Bria, "Study about a filter using a resonator defect in a one-dimensional photonic comb containing a left-hand material," Proceedings of the 1st International Conference on Electronic Engineering and Renewable Energy (ICEERE 2018), B. Hajji, et al. (eds.), Lecture Notes in Electrical Engineering, Vol. 519, Springer, Singapore, 2019.
doi:https://doi.org/10.1007/978-981-13-1405-6_19

13. Vasseur, J. O., B. Djafari-Rouhani, L. Dobrzynski, A. Akjouj, and J. Zemmouri, "Defect modes in one-dimensional comblike photonic waveguides," Physical Review B, Vol. 59, No. 20, 13446, 1999.
doi:10.1103/physrevb.59.13446        Google Scholar

14. Dobrzynski, L., A. Akjouj, B. Djafari-Rouhani, J. O. Vasseur, and J. Zemmouri, "Giant gaps in photonic band structures," Physical Review B, Vol. 57, No. 16, R9388, 1998.
doi:10.1103/physrevb.57.r9388        Google Scholar

15. Khattab, Moulay Said, Tarik Touiss, Ilyass El Kadmiri, Fatima Zahra Elamri, and Driss Bria, "Multi-channel electromagnetic filters based on EIT and Fano resonances through parallel segments and asymmetric resonators," Progress In Electromagnetics Research Letters, Vol. 115, 105-109, 2024.
doi:10.2528/pierl23101004        Google Scholar

16. Mouadili, A., E. H. El Boudouti, A. Soltani, A. Talbi, A. Akjouj, and B. Djafari-Rouhani, "Theoretical and experimental evidence of Fano-like resonances in simple monomode photonic circuits," Journal of Applied Physics, Vol. 113, No. 16, 164101, 2013.
doi:10.1063/1.4802695        Google Scholar

17. Touiss, Tarik, Younes Errouas, Ilyass El Kadmiri, and Driss Bria, "Electromagnetic filtering with high performance by one dimensional defective comb-like waveguides structure using the transfer matrix," E3S Web of Conferences, Vol. 469, 00091, 2023.
doi:10.1051/e3sconf/202346900091

18. Touiss, T., Y. Errouas, A. Ouariach, and D. Bria, "Theoretical design of high-performance guiding and filtering devices using photonic comb-like waveguides with defective resonators," Journal of Electromagnetic Waves and Applications, Vol. 38, No. 16, 1779-1795, 2024.
doi:10.1080/09205071.2024.2398637        Google Scholar

19. Touiss, T., I. El Kadmiri, Y. Errouas, and D. Bria, "Electromagnetically induced transparency and Fano resonances in waveguides and U-shaped or cross-shaped resonators," Progress In Electromagnetics Research Letters, Vol. 127, 53-63, 2024.
doi:10.2528/pierm24020301        Google Scholar

20. Bria, D., M. B. Assouar, M. Oudich, Y. Pennec, J. Vasseur, and B. Djafari-Rouhani, "Opening of simultaneous photonic and phononic band gap in two-dimensional square lattice periodic structure," Journal of Applied Physics, Vol. 109, No. 1, 014507, 2011.
doi:10.1063/1.3530682        Google Scholar