Vol. 165
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-02-03
Adaptive Model-Free Sliding Mode Fault-Tolerant Speed-Current Control for Permanent Magnet Synchronous Motor Under Extreme Operating Conditions with Parameters Mismatch
By
Progress In Electromagnetics Research C, Vol. 165, 247-256, 2026
Abstract
To address the limitations of Permanent Magnet Synchronous Motor (PMSM) speed-current closed-loop systems, including control performance degradation due to PI controller integral saturation and insufficient convergence in traditional model predictive current control (MPCC) while simultaneously reducing the computational load in the control system, this study combines model-free control theory with higher-order sliding mode methods and proposes an adaptive nonsingular terminal model-free sliding mode composite control strategy (ANTMFSMC) that considers parameter mismatch. First, based on the mathematical model of PMSM and the model-free theory for nonlinear systems, a speed-current loop control model is established. By combining the nonsingular terminal sliding mode with adaptive sliding mode reaching law, a speed-current loop ANTMFSMC controller is designed, and an improved exponential sliding mode disturbance observer (INTSMDO) is constructed to estimate the unknown components of the unmodeled dynamics and parameter uncertainties in the system. These estimates are then introduced as a feedforward compensation into the ANTMFSMC controller to form a complete composite control architecture. Finally, through simulations and experimental comparisons with traditional PI control and the traditional nonsingular terminal model-free sliding mode control based on sliding mode disturbance observer method (NTMFSMC-SMDO), the results show that the proposed strategy effectively suppresses d-q axis current and voltage ripple, significantly improves the convergence speed and anti-disturbance capability of the system, and demonstrates good engineering application value.
Citation
Junqin Liu, Haicheng Zhong, Zhentong Wang, Xinchun Jiang, Yilin Chen, Daoyi Gu, Kaihui Zhao, Xiangfei Li, and Lin Liu, "Adaptive Model-Free Sliding Mode Fault-Tolerant Speed-Current Control for Permanent Magnet Synchronous Motor Under Extreme Operating Conditions with Parameters Mismatch," Progress In Electromagnetics Research C, Vol. 165, 247-256, 2026.
doi:10.2528/PIERC25120302
References

1. Li, Xiangfei, Junqin Liu, Kaihui Zhao, Yang Yin, and Lihua Zou, "An improved model-free sliding mode control algorithm of super-twisting for SPMSM," Progress In Electromagnetics Research C, Vol. 135, 195-210, 2023.
doi:10.2528/pierc23061502        Google Scholar

2. Lin, Faa-Jeng, Syuan-Yi Chen, I-Ming Hsu, and Cheng-Xi Xu, "Robust deadbeat predict current control using intelligent integral sliding mode control for interior permanent magnet synchronous motor drive," IEEE Transactions on Transportation Electrification, Vol. 11, No. 3, 8282-8293, 2025.
doi:10.1109/tte.2025.3539298        Google Scholar

3. Shi, Song, Yi Wang, and Songping Mai, "Research on speed control of PMSM based on a new sliding mode reaching law of fast integral terminal sliding mode control with iterative-based high-gain disturbance observer," IEEE Transactions on Industry Applications, Vol. 61, No. 3, 4352-4363, 2025.
doi:10.1109/tia.2025.3540986        Google Scholar

4. Zhao, Xinyu and Limei Wang, "Finite-time control of permanent magnet linear synchronous motor via variable gain fractional-order terminal sliding mode control," IEEE Transactions on Transportation Electrification, Vol. 11, No. 4, 9105-9120, 2025.
doi:10.1109/tte.2025.3561454        Google Scholar

5. Liu, Junqin, Zhentong Wang, Haicheng Zhong, Feng Deng, Kaihui Zhao, and Xiangfei Li, "Improved active-disturbance rejection cascade control of PMSM based on new fast super-twisting non-singular terminal sliding mode control law," Progress In Electromagnetics Research Letters, Vol. 128, 1-9, 2025.
doi:10.2528/pierl25070303        Google Scholar

6. Lee, Hyung-Woo, Gi-Jung Nam, and Kyo-Beum Lee, "Simple speed control strategy for a mono-inverter dual parallel permanent magnet synchronous motor drive system," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 13, No. 2, 2580-2589, 2025.
doi:10.1109/jestpe.2025.3550977        Google Scholar

7. Liu, Junqin, Zhentong Wang, Feng Deng, Kaihui Zhao, and Xiangfei Li, "Continuous high-order sliding mode optimization control of PMSM based on STSMO," Progress In Electromagnetics Research Letters, Vol. 127, 29-37, 2025.
doi:10.2528/PIERL25070101        Google Scholar

8. Wang, Shuming, Zheming Wang, Xitong Niu, Yanyan Zhu, Wu Lu, and Yongsheng Liu, "An adaptive sliding mode control for PMSM servo systems beyond the inertia ratio limit," IEEE Transactions on Power Electronics, Vol. 40, No. 11, 16352-16366, 2025.
doi:10.1109/tpel.2025.3580353        Google Scholar

9. Yu, Xu, Xuan Wu, Ting Wu, Dan Yang, Zhenghao Lei, and Shoudao Huang, "An FTSMO-based current measurement offset error compensation method in SPMSM drives," IEEE Transactions on Industrial Electronics, Vol. 72, No. 7, 6840-6851, 2025.
doi:10.1109/tie.2024.3519570        Google Scholar

10. Qu, Lizhi, Wei Qiao, and Liyan Qu, "An extended-state-observer-based sliding-mode speed control for permanent-magnet synchronous motors," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 9, No. 2, 1605-1613, 2021.
doi:10.1109/jestpe.2020.2990442        Google Scholar

11. Yim, Jaeyun, Sesun You, Youngwoo Lee, and Wonhee Kim, "Chattering attenuation disturbance observer for sliding mode control: Application to permanent magnet synchronous motors," IEEE Transactions on Industrial Electronics, Vol. 70, No. 5, 5161-5170, May 2023.
doi:10.1109/tie.2022.3189074        Google Scholar

12. Xu, Wei, Abdul Khalique Junejo, Yi Liu, and Md. Rabiul Islam, "Improved continuous fast terminal sliding mode control with extended state observer for speed regulation of PMSM drive system," IEEE Transactions on Vehicular Technology, Vol. 68, No. 11, 10465-10476, Nov. 2019.
doi:10.1109/tvt.2019.2926316        Google Scholar

13. Hou, Qiankang, Shihong Ding, and Xinghuo Yu, "Composite super-twisting sliding mode control design for PMSM speed regulation problem based on a novel disturbance observer," IEEE Transactions on Energy Conversion, Vol. 36, No. 4, 2591-2599, Dec. 2021.
doi:10.1109/tec.2020.2985054        Google Scholar

14. Liu, Yong-Chao, Salah Laghrouche, Daniel Depernet, Abdesslem Djerdir, and Maurizio Cirrincione, "Disturbance-observer-based complementary sliding-mode speed control for PMSM drives: A super-twisting sliding-mode observer-based approach," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 9, No. 5, 5416-5428, 2021.
doi:10.1109/jestpe.2020.3032103        Google Scholar

15. He, Yingshen, Kaihui Zhao, Zhixuan Yi, and Yishan Huang, "Improved terminal sliding mode control of PMSM dual-inertia system with acceleration feedback based on finite-time ESO," Progress In Electromagnetics Research M, Vol. 134, 21-30, 2025.
doi:10.2528/pier25040405        Google Scholar

16. Zhang, Yang, Mingfeng Zhou, Wenxuan Luo, and Zhun Cheng, "An adaptive learning co-evolutionary variational particle swarm optimization algorithm for parameter identification of PMSWG," Progress In Electromagnetics Research C, Vol. 141, 175-183, 2024.
doi:10.2528/pierc24011201        Google Scholar

17. Wang, Xueqing, Jianwei Shen, Shuai Sun, Dianxun Xiao, Yicheng Liu, and Zheng Wang, "General modeling and control of multiple three-phase PMSM drives," IEEE Transactions on Power Electronics, Vol. 40, No. 1, 1900-1909, 2025.
doi:10.1109/tpel.2024.3483830        Google Scholar