Vol. 165
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-01-30
Compact Dual-Polarized Endfire Dielectric Resonator Antenna for 5G Millimeter-Wave Terminal Application
By
Progress In Electromagnetics Research C, Vol. 165, 199-205, 2026
Abstract
This work presents a miniaturized dual-polarized endfire dielectric resonator antenna (DRA) array tailored for millimeter-wave (mmWave) 5G terminal systems. The proposed antenna element integrates a dielectric resonator with a cavity structure, both realized using standard printed circuit board (PCB) fabrication. Two orthogonal resonant modes of the DRA are excited to generate vertical (VP) and horizontal (HP) polarizations. To achieve broadband characteristics, two orthogonal cavity modes are further introduced and coupled with the DRA modes, enabling dual-mode operation. The VP and HP elements utilize an identical physical configuration, ensuring a highly compact architecture. Based on this unit, a four-element array was designed, fabricated, and experimentally verified. Measurements confirm an operational bandwidth of 26.1-29.8 GHz for both polarization states, with peak gains of 10.0 dBi and 10.1 dBi for VP and HP, respectively. Furthermore, both polarizations demonstrate beam-steering capability, indicating that the proposed dual-polarized endfire DRA array is a promising solution for next-generation 5G mmWave terminal applications.
Citation
Xiao-Mei Ni, and Xin-Hao Ding, "Compact Dual-Polarized Endfire Dielectric Resonator Antenna for 5G Millimeter-Wave Terminal Application," Progress In Electromagnetics Research C, Vol. 165, 199-205, 2026.
doi:10.2528/PIERC25111307
References

1. Chettri, Lalit and Rabindranath Bera, "A comprehensive survey on Internet of Things (IoT) toward 5G wireless systems," IEEE Internet of Things Journal, Vol. 7, No. 1, 16-32, 2020.
doi:10.1109/JIOT.2019.2948888        Google Scholar

2. Tahir, Mohammad, Mohamed Hadi Habaebi, Mohammad Dabbagh, Amna Mughees, Abdul Ahad, and Kazi Istiaque Ahmed, "A review on application of blockchain in 5G and beyond networks: Taxonomy, field-trials, challenges and opportunities," IEEE Access, Vol. 8, 115876-115904, 2020.
doi:10.1109/access.2020.3003020        Google Scholar

3. Feng, Botao, Liangying Li, Kwok L. Chung, and Yansheng Li, "Wideband widebeam dual circularly polarized magnetoelectric dipole antenna/array with meta-columns loading for 5G and beyond," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 1, 219-228, 2020.
doi:10.1109/tap.2020.3008632        Google Scholar

4. Ivashina, Marianna, Artem Vilenskiy, Hsi-Tseng Chou, Joachim Oberhammer, and M. Ng Mou Kehn, "Antenna technologies for beyond-5G wireless communication: Challenges and opportunities," 2021 International Symposium on Antennas and Propagation (ISAP), 1-2, Taipei, Taiwan, 2021.
doi:10.23919/ISAP47258.2021.9614381

5. Zhang, Jing, Xiaohu Ge, Qiang Li, Mohsen Guizani, and Yanxia Zhang, "5G millimeter-wave antenna array: Design and challenges," IEEE Wireless Communications, Vol. 24, No. 2, 106-112, 2016.
doi:10.1109/mwc.2016.1400374rp        Google Scholar

6. Naqvi, Aqeel Hussain and Sungjoon Lim, "Review of recent phased arrays for millimeter-wave wireless communication," Sensors, Vol. 18, No. 10, 3194, 2018.
doi:10.3390/s18103194        Google Scholar

7. Sadhu, Bodhisatwa, Yahya Tousi, Joakim Hallin, Stefan Sahl, Scott K. Reynolds, Örjan Renström, Kristoffer Sjögren, Olov Haapalahti, Nadav Mazor, Bo Bokinge, Gustaf Weibull, Håkan Bengtsson, Anders Carlinger, Eric Westesson, Jan-Erik Thillberg, Leonard Rexberg, Mark Yeck, Xiaoxiong Gu, Mark Ferriss, Duixian Liu, Daniel Friedman, and Alberto Valdes-Garcia, "A 28-GHz 32-element TRX phased-array IC with concurrent dual-polarized operation and orthogonal phase and gain control for 5G communications," IEEE Journal of Solid-state Circuits, Vol. 52, No. 12, 3373-3391, 2017.
doi:10.1109/jssc.2017.2766211        Google Scholar

8. Dunworth, Jeremy D, Aliakbar Homayoun, Bon-Hyun Ku, Yu-Chin Ou, Kaushik Chakraborty, Gang Liu, Tony Segoria, Jongrit Lerdworatawee, Joung Won Park, Hyun-Chul Park, H. Hedayati, D. Lu, P. Monat, K. Douglas, and V. Aparin, "A 28 GHz bulk-CMOS dual-polarization phased-array transceiver with 24 channels for 5G user and basestation equipment," 2018 IEEE International Solid-state Circuits Conference-(ISSCC), 70-72, Francisco, CA, USA, 2018.
doi:10.1109/ISSCC.2018.8310188

9. Moreno, Resti Montoya, Juha Ala-Laurinaho, Alexander Khripkov, Janne Ilvonen, and Ville Viikari, "Dual-polarized mm-Wave endfire antenna for mobile devices," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 8, 5924-5934, 2020.
doi:10.1109/tap.2020.2989556        Google Scholar

10. Moreno, Resti Montoya, Joni Kurvinen, Juha Ala-Laurinaho, Alexander Khripkov, Janne Ilvonen, Jari van Wonterghem, and Ville Viikari, "Dual-polarized mm-Wave endfire chain-slot antenna for mobile devices," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 1, 25-34, 2020.
doi:10.1109/tap.2020.3001434        Google Scholar

11. Hsu, Yao-Wen, Tzu-Chien Huang, He-Sheng Lin, and Yi-Cheng Lin, "Dual-polarized quasi Yagi-Uda antennas with endfire radiation for millimeter-wave mimo terminals," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6282-6289, 2017.
doi:10.1109/tap.2017.2734238        Google Scholar

12. Lu, Rong, Chao Yu, Yuanwei Zhu, and Wei Hong, "Compact millimeter-wave endfire dual-polarized antenna array for low-cost multibeam applications," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 12, 2526-2530, 2020.
doi:10.1109/lawp.2020.3038790        Google Scholar

13. Zhang, Jin, Kun Zhao, Lei Wang, Shuai Zhang, and Gert Frølund Pedersen, "Dual-polarized phased array with end-fire radiation for 5G handset applications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 4, 3277-3282, 2019.
doi:10.1109/tap.2019.2937584        Google Scholar

14. Li, Hao, Yue Li, Le Chang, Wangyu Sun, Xu Qin, and Hanyang Wang, "A wideband dual-polarized endfire antenna array with overlapped apertures and small clearance for 5G millimeter-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 2, 815-824, 2020.
doi:10.1109/tap.2020.3016512        Google Scholar

15. Li, Yunli, Fan Wu, Dingwei Xi, Zhihao Jiang, Chao Yu, and Wei Hong, "A compact dual-polarized endfire antenna array for 5G millimeter-wave terminal," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 6, 1466-1470, 2023.
doi:10.1109/lawp.2023.3246720        Google Scholar

16. Zhu, Yuqing and Changjiang Deng, "Wideband dual-polarized endfire phased array antenna with small ground clearance for 5G mmWave mobile terminals," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 6, 5469-5474, 2023.
doi:10.1109/tap.2023.3263007        Google Scholar

17. Zhu, Yuqing, Huidong Xu, and Changjiang Deng, "Single-layer dual-polarized endfire phased array antenna for 5G mm-Wave mobile terminals," IEEE Antennas and Wireless Propagation Letters, Vol. 23, No. 6, 1939-1943, 2024.
doi:10.1109/lawp.2024.3374884        Google Scholar

18. Guo, Yujiao, Yujian Li, Junhong Wang, and Lei Ge, "A compact substrate-integrated dual-polarized magneto-electric dipole antenna with endfire radiation for millimeter-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 10, 8332-8337, 2023.
doi:10.1109/tap.2023.3307479        Google Scholar

19. Sun, Kai, Boning Wang, Tianming Yang, Sihao Liu, Yongpin Chen, Yanwen Zhao, and Deqiang Yang, "Dual-polarized millimeter-wave endfire array based on substrate integrated mode-composite transmission line," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 1, 341-352, 2021.
doi:10.1109/tap.2021.3098551        Google Scholar

20. Sun, Libin, Yue Li, and Zhijun Zhang, "Wideband dual-polarized endfire antenna based on compact open-ended cavity for 5G mm-Wave mobile phones," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 3, 1632-1642, 2021.
doi:10.1109/tap.2021.3113701        Google Scholar

21. Zhao, Chen Xi, Yong Mei Pan, and Guo Dong Su, "Design of filtering dielectric resonator antenna arrays using simple feeding networks," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 8, 7252-7257, 2022.
doi:10.1109/tap.2022.3170939        Google Scholar

22. Liu, Yan-Ting and Kwok Wa Leung, "28 GHz substrate-integrated filtering dielectric resonator antenna array," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 10, 9900-9905, 2022.
doi:10.1109/tap.2022.3188427        Google Scholar

23. Yang, Mei-Di, Yong-Mei Pan, Yu-Xiang Sun, and Kwok-Wa Leung, "Wideband circularly polarized substrate-integrated embedded dielectric resonator antenna for millimeter-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 2, 1145-1150, 2019.
doi:10.1109/tap.2019.2938629        Google Scholar

24. Shi, Jin, Yi Guo, Ruijing Zhao, Bowen Wu, Yanyun Chen, and Wei Zhang, "Endfire substrate integrated dielectric resonator antenna with dual-beam radiation for millimeter-wave application," IEEE Antennas and Wireless Propagation Letters, Vol. 23, No. 5, 1523-1527, 2024.
doi:10.1109/lawp.2024.3361558        Google Scholar

25. Omar, Ahmed Abdelmottaleb, Junho Park, Wonpyo Kwon, and Wonbin Hong, "A compact wideband vertically polarized end-fire millimeter-wave antenna utilizing slot, dielectric, and cavity resonators," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 9, 5234-5243, 2021.
doi:10.1109/tap.2021.3061111        Google Scholar

26. Yang, Wen-Wen, Xin-Hao Ding, Tian-Wen Chen, Lei Guo, Wei Qin, and Jian-Xin Chen, "A shared-aperture antenna for (3.5, 28) GHz terminals with end-fire and broadside steerable beams in millimeter wave band," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 10, 9101-9111, 2022.
doi:10.1109/tap.2022.3178159        Google Scholar

27. Cui, Lun-Xue, Xin-Hao Ding, Wen-Wen Yang, Lei Guo, Li-Heng Zhou, and Jian-Xin Chen, "Communication compact dual-band hybrid dielectric resonator antenna for 5G millimeter-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 1, 1005-1010, 2023.
doi:10.1109/tap.2022.3211389        Google Scholar