Vol. 165
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-01-20
Corporate-Fed Inclined Patch Arrays for Meteorological Direct Broadcast Reception
By
Progress In Electromagnetics Research C, Vol. 165, 35-47, 2026
Abstract
This work codesigns and validates a compact microstrip patch array with a corporate feed for meteorological direct broadcast at 7.5 GHz, comparing 1×4 to 1×64 arrays. Square patches with rounded corners are rotated 45° to suppress modes, reduce coupling, and preserve broadside radiation. The feed network delivers equal amplitude to four ports. A neural network surrogate trained on full-wave samples accelerates exploration of edge length, corner radius, spacing, rotation, and feed-line dimensions while enforcing limits on S11 and coupling. The 1×4 prototype uses Rogers RT Duroid 5880, εr 2.2, thickness 0.787 mm, with a substrate size of 120 mm by 75 mm. Photolithography and anechoic measurements confirm a 7.5 GHz center frequency, broadside radiation, peak gain above 14 dBi, and a 450 MHz bandwidth. Scaling to 1×64 shows 3 dB gain per doubling, reduced beamwidth, stable bandwidth, and coupling; sensitivity studies verify robustness.
Citation
Paramasivam Jothilakshmi, and Rajendran Mohanasundaram, "Corporate-Fed Inclined Patch Arrays for Meteorological Direct Broadcast Reception," Progress In Electromagnetics Research C, Vol. 165, 35-47, 2026.
doi:10.2528/PIERC25100103
References

1. Haupt, Randy L. and Yahya Rahmat-Samii, "Antenna array developments: A perspective on the past, present and future," IEEE Antennas and Propagation Magazine, Vol. 57, No. 1, 86-96, 2015.
doi:10.1109/map.2015.2397154        Google Scholar

2. Sun, Jianqing, "A novel design of 45˚ linearly polarized array antenna with taylor distribution," Progress In Electromagnetics Research Letters, Vol. 106, 151-155, 2022.
doi:10.2528/pierl22062503        Google Scholar

3. Nguyen, Duy Hai, Juha Ala-Laurinaho, Jochen Moll, Viktor Krozer, and Gernot Zimmer, "Improved sidelobe-suppression microstrip patch antenna array by uniform feeding networks," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 11, 7339-7347, 2020.
doi:10.1109/tap.2020.2995416        Google Scholar

4. Lu, Yangyi, Lei Zhou, Mantang Cui, Xiaodong Du, and Yongjun Hu, "A method for planar phased array calibration," Progress In Electromagnetics Research Letters, Vol. 94, 19-25, 2020.
doi:10.2528/pierl20090106        Google Scholar

5. Yang, Huanhuan, Tong Li, Liming Xu, Xiangyu Cao, Jun Gao, Jianghao Tian, Haonan Yang, and Dong Sun, "A new strategy to design microstrip antenna array with low side-lobe level and high gain," IEEE Access, Vol. 7, 152715-152721, 2019.
doi:10.1109/access.2019.2948098        Google Scholar

6. Tang, Xiao-Rong, Shun-Shi Zhong, Zhu Sun, and Jian-Jun Liu, "Low-cost low-sidelobe microstrip array with circular polarization," Microwave and Optical Technology Letters, Vol. 50, No. 9, 2384-2386, 2008.
doi:10.1002/mop.23687        Google Scholar

7. Mohammadi Shirkolaei, M., H. R. Dalili Oskouei, and M. Abbasi, "Design of 1 * 4 microstrip antenna array on the human thigh with gain enhancement," IETE Journal of Research, Vol. 69, No. 9, 5944-5950, 2023.
doi:10.1080/03772063.2021.2004459        Google Scholar

8. Tan, Moh Chuan, Minghui Li, Qammer H. Abbasi, and Muhammad Ali Imran, "A wideband beamforming antenna array for 802.11 ac and 4.9 GHz in modern transportation market," IEEE Transactions on Vehicular Technology, Vol. 69, No. 3, 2659-2670, 2020.
doi:10.1109/tvt.2019.2963111        Google Scholar

9. Sedgeechongaraluye-Yekan, Tohid, R. A. Sadeghzadeh, and M. Naser-Moghadasi, "Microstrip-fed circularly polarized antenna array using semi-fractal cells for implicational band," IETE Journal of Research, Vol. 60, No. 6, 383-388, 2014.
doi:10.1080/03772063.2014.901484        Google Scholar

10. Miligy, Ahmed F., Fatma Taher, Mohamed Fathy Abo Sree, Sara Yehia Abdel Fatah, Thamer Alghamdi, and Moath Alathbah, "Investigation and implementation of miniaturized microwave system for linear array antenna loaded with omega structures planar array," IEEE Access, Vol. 12, 82636-82646, 2024.
doi:10.1109/access.2024.3405980        Google Scholar

11. Pandhare, Rashmi A., Prasanna L. Zade, and Mahesh P. Abegaonkar, "Miniaturized microstrip antenna array using defected ground structure with enhanced performance," Engineering Science and Technology, an International Journal, Vol. 19, No. 3, 1360-1367, 2016.
doi:10.1016/j.jestch.2016.03.007        Google Scholar

12. Abushakra, Feras Z., Asem S. Al-Zoubi, and Derar F. Hawatmeh, "Design and measurements of rectangular dielectric resonator antenna linear arrays," Applied Computational Electromagnetics Society Journal (ACES), Vol. 33, No. 4, 380-387, 2018.        Google Scholar

13. Abishek, Ebenezer, Ramesh Subramaniam, Parthasarathy Ramanujam, and Manikandan Esakkimuthu, "Low-profile circularly polarized conformal antenna array with side lobe suppression for vehicular SATCOM applications," Applied Computational Electromagnetics Society Journal (ACES), Vol. 38, No. 6, 439-447, 2023.
doi:10.13052/2023.aces.j.380608        Google Scholar

14. Kola, Kalyan Sundar, Anirban Chatterjee, and Deven Patanvariya, "Design of a compact high gain printed octagonal array of spiral-based fractal antennas for DBS application," International Journal of Microwave and Wireless Technologies, Vol. 12, No. 8, 769-781, 2020.
doi:10.1017/s1759078720000239        Google Scholar

15. Niu, Zicheng, Hou Zhang, Qiang Chen, and Tao Zhong, "A novel defect ground structure for decoupling closely spaced E-plane microstrip antenna array," International Journal of Microwave and Wireless Technologies, Vol. 11, No. 10, 1069-1074, 2019.
doi:10.1017/s1759078719000801        Google Scholar

16. Sameena, N. M., R. B. Konda, and S. N. Mulgi, "Broadband, high-gain complementary-symmetry microstrip array antenna," Microwave and Optical Technology Letters, Vol. 52, No. 10, 2256-2258, 2010.
doi:10.1002/mop.25477        Google Scholar

17. Patanvariya, Deven G., Anirban Chatterjee, and Kalyan Sundar Kola, "High-gain and circularly polarized fractal antenna array for dedicated short range communication systems," Progress In Electromagnetics Research C, Vol. 101, 133-146, 2020.
doi:10.2528/pierc20020706        Google Scholar

18. Liu, Fei, Zhijun Zhang, Wenhua Chen, Zhenghe Feng, and Magdy F. Iskander, "An endfire beam-switchable antenna array used in vehicular environment," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 195-198, 2010.
doi:10.1109/lawp.2010.2044973        Google Scholar

19. Nikkhah, Mohammad Ranjbar, Ahmed A. Kishk, and Jalil Rashed-Mohassel, "Wideband DRA array placed on array of slot windows," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 12, 5382-5390, 2015.
doi:10.1109/tap.2015.2490246        Google Scholar

20. Garbaruk, Marek, "A planar four-element UWB antenna array with stripline feeding network," Electronics, Vol. 11, No. 3, 469, 2022.
doi:10.3390/electronics11030469        Google Scholar

21. Al-Mumen, Haider and Ahmed Abdulkadhim Hamad, "Design and characterization of an radio frequency reused energy system for nano-devices," Bulletin of Electrical Engineering and Informatics, Vol. 11, No. 5, 2595-2602, 2022.
doi:10.11591/eei.v11i5.4321        Google Scholar

22. Hasan, M. F., Dayang Azra Awang Mat, and M. A. Sayed, "Modified back-line inset feed 1 × 4 array microstrip antenna for 5.8 GHz frequency band," Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), Vol. 36, No. 2, 892-900, 2024.
doi:10.11591/ijeecs.v36.i2.pp892-900        Google Scholar

23. Arce, Armando, Fernando Arce, Enrique Stevens-Navarro, Ulises Pineda-Rico, Marco Cardenas-Juarez, and Abel Garcia-Barrientos, "Recurrent deep learning for beam pattern synthesis in optimized antenna arrays," Applied Sciences, Vol. 15, No. 1, 204, 2025.
doi:10.3390/app15010204        Google Scholar

24. Belen, Mehmet A., Alper Caliskan, Slawomir Koziel, Anna Pietrenko-Dabrowska, and Peyman Mahouti, "Optimal design of transmitarray antennas via low-cost surrogate modelling," Scientific Reports, Vol. 13, No. 1, 15044, 2023.
doi:10.1038/s41598-023-42134-w        Google Scholar

25. Montaser, Ahmed M. and Korany R. Mahmoud, "Deep learning based antenna design and beam-steering capabilities for millimeter-wave applications," IEEE Access, Vol. 9, 145583-145591, 2021.
doi:10.1109/access.2021.3123219        Google Scholar

26. Pratigya, Mathur and Girish Kumar, "Antenna at S-band as ground for array at X-band in dual frequency antenna at S/X-bands," Progress In Electromagnetics Research Letters, Vol. 71, 15-22, 2017.
doi:10.2528/pierl17080701        Google Scholar

27. Toso, G., C. Mangenot, and A. G. Roederer, "Sparse and thinned arrays for multiple beam satellite applications," 2nd European Conference on Antennas and Propagation (EuCAP 2007), 1-4, Edinburgh, 2007.
doi:10.1049/ic.2007.1093