Vol. 165
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-01-28
Novel Ovate Antenna for Wireless Communication: Characteristic Mode and Time Domain Analyses
By
Progress In Electromagnetics Research C, Vol. 165, 140-149, 2026
Abstract
In this article, a novel ovate-shaped microstrip antenna (OMSA) is presented for application in wireless communication. It covers the evolution of a new shape and delves deeper into the resonance mechanism of the proposed design using characteristic mode analysis (CMA). The OMSA resonates at 2.45 GHz and 2.69 GHz with return loss of -18.82 dB and -31.84 dB, respectively. It offers a ultra-wideband performance with 91.46% measured bandwidth. The characteristic impedance and VSWR at 2.4 GHz are 49 Ω and 1.3, respectively. By introducing performance enhancement techniques such as ground truncation and a notch in the patch, the antenna resonance characteristics have been enhanced. A prototype of the proposed OMSA has been fabricated and validated experimentally. The time domain characteristics of the proposed OMSA have been simulated for both face-to-face (FtF) and side-by-side (SbS) configurations. The FtF configuration offers better performance, showcasing group delay of the OMSA < 2 ns and minimal variation along the operating band. The phase linearity is also maintained minimizing any distortions. The time domain results demonstrate a maximum fidelity factor of 90.62%, reaffirming the suitability of the antenna for wireless communication. The suitability of the proposed OMSA for wireless applications is also validated experimentally by analyzing group delay and S21 phase linearity of the received signal.
Citation
Elisha Chand, and Sellakkutti Suganthi, "Novel Ovate Antenna for Wireless Communication: Characteristic Mode and Time Domain Analyses," Progress In Electromagnetics Research C, Vol. 165, 140-149, 2026.
doi:10.2528/PIERC25111701
References

1. Chung, Ming-An, Ming-Chang Lee, Chia-Chun Hsu, and Chia-Wei Lin, "Multi-band coupled-fed antenna for 4G LTE, Sub-6G, and WLAN frequency bands in various electronic devices," IEEE Access, Vol. 12, 45398-45422, 2024.
doi:10.1109/access.2024.3380620        Google Scholar

2. Sakulchat, Suwat, Amnoiy Ruengwaree, Watcharaphon Naktongq, Pramuk Unahalekhaka, and Sommart Promput, "Low-cost high gain sea pimp-shaped dual band monopole antenna for mobile 4G/5G/LTE41/WLAN application," Progress In Electromagnetics Research C, Vol. 140, 41-51, 2024.
doi:10.2528/pierc23102607        Google Scholar

3. Khan, Muhammad Afzaal, Waleed Tariq Sethi, Waqar Ahmad Malik, Abdul Jabbar, Muhammad Ali Khalid, Ali M. Almuhlafi, and Mohamed Himdi, "A comprehensive analysis of low-profile dual band flexible omnidirectional wearable antenna for WBAN applications," IEEE Access, Vol. 12, 45187-45201, 2024.
doi:10.1109/access.2024.3380908        Google Scholar

4. Du, Jinxin, Ruimeng Wang, Haiyan Li, Xue-Xia Yang, and Christophe Roblin, "All-textile compact ultra-wideband microstrip antenna with full ground plane for WBAN applications," International Journal of Antennas and Propagation, Vol. 2024, No. 1, 4236695, 2024.
doi:10.1155/2024/4236695        Google Scholar

5. Khan, Naveed Hamid Nawaz, Botao Feng, Xiao Ding, Wenzhe Gu, Li Deng, and Kwok L. Chung, "Dual-band printed antenna design for Bluetooth and WLAN applications," 2024 IEEE 7th International Conference on Electronic Information and Communication Technology (ICEICT), 1122-1125, Xi'an, China, 2024.
doi:10.1109/ICEICT61637.2024.10671335

6. Vuyyuru, Sravan K. R., Mohamed Räsänen, Jan H. S. Bergman, and Jari Holopainen, "Design and validation of a compact dual-band Bluetooth antenna for smartwatch applications," 2025 19th European Conference on Antennas and Propagation (EuCAP), 1-5, Stockholm, Sweden, 2025.
doi:10.23919/EuCAP63536.2025.10999952

7. Yu, Zhen, Runzhi Sun, Guodong Zhang, Ruirong Niu, Xiaoying Ran, and Ziheng Lin, "A flexible wearable antenna with annular solar eclipse structure for ISM/WLAN/WIMAX/Bluetooth applications," International Journal of Antennas and Propagation, Vol. 2023, No. 1, 8969565, 2023.
doi:10.1155/2023/8969565        Google Scholar

8. Tong, Xinyu, Jun Xu, Hui Zhang, and Xutao Yu, "An integrated microwave and millimeter-wave circularly polarized antenna with ISM band gain suppression performance," IEEE Antennas and Wireless Propagation Letters, Vol. 23, No. 11, 3649-3653, Nov. 2024.
doi:10.1109/lawp.2024.3406738        Google Scholar

9. Cai, Huajie and Changrong Liu, "Circularly polarized loop antenna for 2.4 GHz ISM-band biotelemetry devices," IEEE Antennas and Wireless Propagation Letters, Vol. 24, No. 2, 509-513, Feb. 2025.
doi:10.1109/lawp.2024.3506616        Google Scholar

10. Singh, Saurabh and Sudhanshu Verma, "Compact dual band and dual polarized CPW-fed triangular shaped wearable antenna for ISM band applications," Electromagnetics, Vol. 42, No. 1, 38-50, 2022.
doi:10.1080/02726343.2022.2061823        Google Scholar

11. Park, Seungyong and Kyung-Young Jung, "Novel compact UWB planar monopole antenna using a ribbon-shaped slot," IEEE Access, Vol. 10, 61951-61959, 2022.
doi:10.1109/access.2022.3182443        Google Scholar

12. Chavali, Venkata A. P. and Amit A. Deshmukh, "Wideband designs of regular shape microstrip antennas using modified ground plane," Progress In Electromagnetics Research C, Vol. 117, 203-219, 2021.
doi:10.2528/pierc21110202        Google Scholar

13. Karad, Kailash V., Vaibhav S. Hendre, Jaswantsing L. Rajput, Vivek Kadam, Vaibhav E. Narawade, Ravindra Bakale, and Gayatri D. Londhe, "A SAR analysis of hexagonal-shaped UWB antenna for healthcare applications," EURASIP Journal on Wireless Communications and Networking, Vol. 2024, No. 72, 2024.
doi:10.1186/s13638-024-02405-0        Google Scholar

14. Swetha, Ravikanti and Lokam Anjaneyulu, "Novel design and characterization of wide band hook shaped aperture coupled circularly polarized antenna for 5G application," Progress In Electromagnetics Research C, Vol. 113, 161-175, 2021.
doi:10.2528/pierc21040202        Google Scholar

15. Deshmukh, Amit A. and Anuja A. Odhekar, "Dual band circularly polarized modified ψ-shape microstrip antenna," Progress In Electromagnetics Research C, Vol. 115, 161-174, 2021.
doi:10.2528/pierc21062803        Google Scholar

16. Feng, Botao, Siyuan Qi, Xiao Ding, Xingxing Yang, and Chow-Yen-Desmond Sim, "A dual-polarized multi-wideband ceiling antenna with eight-diagram shape for 2G/3G/LTE/5G Sub-6 GHz indoor applications," IEEE Access, Vol. 12, 135338-135351, 2024.
doi:10.1109/access.2024.3427807        Google Scholar

17. Du, Chengzhu, Ling-Ru Pei, Jie Zhang, and Cheng-Xin Shi, "A gain enhanced dual-band low SAR AMC-based MIMO antenna for WBAN and WLAN applications," Progress In Electromagnetics Research M, Vol. 115, 21-34, 2023.
doi:10.2528/PIERM22100201        Google Scholar

18. Wang, Fuwei, Yi Wang, Xiaoyu Zhang, Lu Liu, Ke Li, and Yuhui Ren, "Wideband low-RCS and gain-enhanced antenna using frequency selective absorber based on patterned graphene," Scientific Reports, Vol. 14, No. 1, 9306, 2024.
doi:10.1038/s41598-024-60143-1        Google Scholar

19. Reddy, Regalla Narendra, Nalam Venkata Koteswara Rao, and Dasari Rama Krishna, "An AMC-backed dual-band gain-enhanced wearable antenna with low SAR for WLAN/WBAN applications," Progress In Electromagnetics Research C, Vol. 146, 55-64, 2024.
doi:10.2528/pierc24051902        Google Scholar

20. Kumar, Arun and Ganga Prasad Pandey, "A narrow beam gain enhanced wideband antenna array using slits, I-slots, and L-shaped reflector for 5G millimeter wave applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 2024, No. 1, 8919125, 2024.
doi:10.1155/2024/8919125        Google Scholar

21. Kamil, Ansam Q., Hasan M. Kadhim, and Riyam M. Alsammarraie, "Gain improvement for single band ultra-wideband antenna by slots technique," 2024 21st International Multi-Conference on Systems, Signals & Devices (SSD), 755-760, Erbil, Iraq, 2024.
doi:10.1109/SSD61670.2024.10548907

22. Garbacz, R. and R. Turpin, "A generalized expansion for radiated and scattered fields," IEEE Transactions on Antennas and Propagation, Vol. 19, No. 3, 348-358, 1971.
doi:10.1109/tap.1971.1139935        Google Scholar

23. Harrington, R. and J. Mautz, "Theory of characteristic modes for conducting bodies," IEEE Transactions on Antennas and Propagation, Vol. 19, No. 5, 622-628, 1971.
doi:10.1109/tap.1971.1139999        Google Scholar

24. Harrington, R. and J. Mautz, "Computation of characteristic modes for conducting bodies," IEEE Transactions on Antennas and Propagation, Vol. 19, No. 5, 629-639, 1971.
doi:10.1109/tap.1971.1139990        Google Scholar

25. Mohammad, Ali and A. Hassan, "Dual-wideband MIMO antenna using characteristic mode theory for mobile terminal applications," IEEE Access, Vol. 13, 138914-138931, 2025.
doi:10.1109/access.2025.3596502        Google Scholar

26. Thotakura, Haritha, Rajesh Gogineni, K. Srinivasa Rao, Chunduri Kiran Kumar, Ramesh Babu Sadineni, and Sunitha Mandava, "A miniaturized highly isolated two port triple band-notched UWB MIMO antenna verified by characteristic mode analysis," Progress In Electromagnetics Research C, Vol. 160, 133-142, 2025.
doi:10.2528/pierc25082303        Google Scholar

27. Wang, Zhonggen, Fukuan Zhang, Wenyan Nie, Ming Yang, and Chenlu Li, "A racket-shaped UWB MIMO antenna based on characteristic mode analysis," Progress In Electromagnetics Research B, Vol. 114, 37-50, 2025.
doi:10.2528/pierb25060903        Google Scholar

28. Federal Communications Commission, "47 CFR § 15.503 - Definitions," Code of Federal Regulations, Title 47, Part 15, Subpart F (Ultra-Wideband Operation), U.S. Government Publishing Office, Washington, DC, [Online]. https://www.ecfr.gov/current/title-47/chapter-I/subchapter-A/part-15/subpart-F/section-15.503, 2025.

29. Mobashsher, A. T. and A. M. Abbosh, "Compact 3-D slot-loaded folded dipole antenna with unidirectional radiation and low impulse distortion for head imaging applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 7, 3245-3250, Jul. 2016.
doi:10.1109/tap.2016.2560909        Google Scholar

30. Simorangkir, Roy B. V. B., Asimina Kiourti, and Karu P. Esselle, "UWB wearable antenna with a full ground plane based on PDMS-embedded conductive fabric," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 3, 493-496, Mar. 2018.
doi:10.1109/lawp.2018.2797251        Google Scholar

31. Hasan, Md. Mehedi, Mohammad Rashed Iqbal Faruque, and Mohammad Tariqul Islam, "Dual band metamaterial antenna for LTE/Bluetooth/WiMAX system," Scientific Reports, Vol. 8, No. 1, 1240, 2018.
doi:10.1038/s41598-018-19705-3        Google Scholar

32. Gautam, Anil Kumar, Mohd. Farhan, Niraj Agrawal, and Karumudi Rambabu, "Design and packaging of a compact circularly polarised planar antenna for 2.45-GHz RFID mobile readers," IET Microwaves, Antennas & Propagation, Vol. 13, No. 13, 2310-2314, 2019.
doi:10.1049/iet-map.2019.0261        Google Scholar

33. Sharma, Navneet, Anubhav Kumar, Asok De, and Rakesh Kumar Jain, "Design of compact hexagonal shaped multiband antenna for wearable and tumor detection applications," Progress In Electromagnetics Research M, Vol. 105, 205-217, 2021.
doi:10.2528/pierm21081701        Google Scholar

34. Benkhadda, Omaima, Sarosh Ahmad, Mohamed Saih, Kebir Chaji, Abdelati Reha, Adnan Ghaffar, Salahuddin Khan, Mohammad Alibakhshikenari, and Ernesto Limiti, "Compact broadband antenna with vicsek fractal slots for WLAN and WiMAX applications," Applied Sciences, Vol. 12, No. 3, 1142, 2022.
doi:10.3390/app12031142        Google Scholar

35. Amirinalloo, Shima and Zahra Atlasbaf, "A CPW-fed fractal monopole antenna with a reduced ground plane in frequency range of 500 MHz-5.5 GHz," IET Microwaves, Antennas & Propagation, Vol. 17, No. 13, 1006-1014, 2023.
doi:10.1049/mia2.12418        Google Scholar

36. Marzouk, Mohamed, Youssef Rhazi, Ibrahime Hassan Nejdi, Fatima-Ezzahra Zerrad, Mohamed Saih, Sarosh Ahmad, Adnan Ghaffar, and Mousa Hussein, "Ultra-wideband compact fractal antenna for WiMAX, WLAN, C and X band applications," Sensors, Vol. 23, No. 9, 4254, 2023.
doi:10.3390/s23094254        Google Scholar

37. Yassen, Mahmood T., Ali J. Salim, Mohammed R. Hussan, and Jawad K. Ali, "A compact dual-band dual-polarized antenna based on modified Minkowski fractal," Progress In Electromagnetics Research C, Vol. 140, 11-19, 2024.
doi:10.2528/pierc23110306        Google Scholar

38. Lamultree, Suthasinee, Nattakarn Somsanook, Wararak Narkkoht, and Chuwong Phongcharoenpanich, "A dual-band rectangular shape incorporated into circular patch antenna for 2.4/5 GHz wireless local area network applications," TELKOMNIKA (Telecommunication Computing Electronics and Control), Vol. 23, No. 1, 22-31, 2025.
doi:10.12928/telkomnika.v23i1.26519        Google Scholar