Vol. 165
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-01-31
Sensorless Composite Control of Permanent Magnet Synchronous Motor Based on Fuzzy Adaptive EDS-PLL
By
Progress In Electromagnetics Research C, Vol. 165, 206-220, 2026
Abstract
To address the inherent chattering issue in traditional sliding mode observers for the sensorless control of permanent magnet synchronous motors, an improved strategy combining a Fuzzy Adaptive Higher-order Sliding Mode Observer (HAFSMO) and a composite logarithmic sliding mode locked loop (EDS-PLL) is proposed. First, a higher-order adaptive sliding mode observer is designed, in which an exponential saturation smoothing function (ESSF) replaces the traditional sign function, and fuzzy control is employed to dynamically adjust the boundary layer parameters, enabling a smooth estimation and convergence of the back electromotive force within a finite time. Second, in the phase-locked loop stage, the exponential saturation smoothing function is integrated with the composite logarithmic sliding mode control to construct a composite logarithmic sliding mode phase-locked loop, further enhancing the accuracy of the rotor position observation. Finally, a simulation model was built on the MATLAB/Simulink platform for verification. Both the simulation and experimental results demonstrate that this method effectively suppresses system chattering and improves the accuracy of rotor position observation and overall system performance, thereby validating the effectiveness of the proposed sensorless control strategy.
Citation
Zhuang Qiu, Zhonggen Wang, and Wenyan Nie, "Sensorless Composite Control of Permanent Magnet Synchronous Motor Based on Fuzzy Adaptive EDS-PLL," Progress In Electromagnetics Research C, Vol. 165, 206-220, 2026.
doi:10.2528/PIERC25122309
References

1. Sreenivasu, S. V. N., T. Sathesh Kumar, Omer Bin Hussain, Ajay Reddy Yeruva, Subash Ranjan Kabat, and Abhay Chaturvedi, "Cloud based electric vehicle's temperature monitoring system using IOT," Cybernetics and Systems, Vol. 56, No. 6, 768-783, 2025.
doi:10.1080/01969722.2023.2176649        Google Scholar

2. Peng, Yang, Fuwang Chen, Feng Chen, Chaoxian Wu, Qingyuan Wang, Zhixin He, and Shaofeng Lu, "Energy-efficient train control: A comparative study based on permanent magnet synchronous motor and induction motor," IEEE Transactions on Vehicular Technology, Vol. 73, No. 11, 16148-16159, 2024.
doi:10.1109/tvt.2024.3412941        Google Scholar

3. Wang, Shuai, Jianyong Su, Guangxu Lu, and Guijie Yang, "Decoupling control for aviation dual-redundancy permanent magnet synchronous motor with 0° phase shift," IEEE Transactions on Energy Conversion, Vol. 38, No. 4, 2929-2937, 2023.
doi:10.1109/tec.2023.3291169        Google Scholar

4. Jin, Xinrong, Leifu Zhou, Tingting Lang, and Yanbing Jiang, "Low-voltage water pump system based on permanent magnet synchronous motor," Electronics, Vol. 13, No. 18, 3674, 2024.
doi:10.3390/electronics13183674        Google Scholar

5. Ran, Yukuan, Mingzhong Qiao, Lucheng Sun, and Yihui Xia, "Review of position sensorless control technology for permanent magnet synchronous motors," Energies, Vol. 18, No. 9, 2302, 2025.
doi:10.3390/en18092302        Google Scholar

6. Zhang, Hang, Weiguo Liu, Zhe Chen, and Ningfei Jiao, "An overall system delay compensation method for IPMSM sensorless drives in rail transit applications," IEEE Transactions on Power Electronics, Vol. 36, No. 2, 1316-1329, 2021.
doi:10.1109/tpel.2020.3015742        Google Scholar

7. Sun, Xiaodong, Yao Zhang, Xiang Tian, Junhao Cao, and Jianguo Zhu, "Speed sensorless control for IPMSMs using a modified MRAS with gray wolf optimization algorithm," IEEE Transactions on Transportation Electrification, Vol. 8, No. 1, 1326-1337, 2022.
doi:10.1109/tte.2021.3093580        Google Scholar

8. Ye, Shuaichen and Xiaoxian Yao, "An enhanced SMO-based permanent-magnet synchronous machine sensorless drive scheme with current measurement error compensation," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 9, No. 4, 4407-4419, 2021.
doi:10.1109/jestpe.2020.3038859        Google Scholar

9. Niu, Hongjie, Ling Liu, Dongsong Jin, and Siyuan Liu, "High-tracking-precision sensorless control of PMSM system based on fractional order model reference adaptation," Fractal and Fractional, Vol. 7, No. 1, 21, 2023.
doi:10.3390/fractalfract7010021        Google Scholar

10. Kong, Xiaoguang and Quan Yuan, "Disturbance-rejection control of permanent magnet synchronous motors using robust adaptive extended Kalman filter," IEICE Electronics Express, Vol. 22, No. 18, 20250397, 2025.
doi:10.1587/elex.22.20250397        Google Scholar

11. Yang, Hao, Jing-Wei Tang, and Ying-Ren Chien, "Application of new sliding mode control in vector control of PMSM," IEICE Electronics Express, Vol. 19, No. 13, 20220156, 2022.
doi:10.1587/elex.19.20220156        Google Scholar

12. Wang, Yongwei, Jingbo Wu, Zhijun Guo, Chengwei Xie, Junjie Liu, and Xin Jin, "Flux-weakening fuzzy adaptive ST-SMO sensorless control algorithm for PMSM in EV," The Journal of Supercomputing, Vol. 78, No. 8, 10930-10949, 2022.
doi:10.1007/s11227-021-04264-8        Google Scholar

13. Ren, Ningning, Le Fan, and Zan Zhang, "Sensorless PMSM control with sliding mode observer based on sigmoid function," Journal of Electrical Engineering & Technology, Vol. 16, No. 2, 933-939, 2021.
doi:10.1007/s42835-021-00661-4        Google Scholar

14. Wang, Deqiang and Xudong Liu, "Sensorless control of PMSM with improved adaptive super-twisting sliding mode observer and IST-QSG," IEEE Transactions on Transportation Electrification, Vol. 11, No. 1, 721-731, 2025.
doi:10.1109/tte.2024.3395318        Google Scholar

15. Song, Chonghui, Wenbing Hu, Jiayan Zhang, Chunwang Zhao, and Xianrui Sun, "A gain adaptive high-order terminal sliding mode observer under SPMSM sensorless control," IEEE Transactions on Power Electronics, Vol. 40, No. 5, 6555-6565, 2025.
doi:10.1109/tpel.2025.3525550        Google Scholar

16. Gong, Chao, Yihua Hu, Jinqiu Gao, Yangang Wang, and Liming Yan, "An improved delay-suppressed sliding-mode observer for sensorless vector-controlled PMSM," IEEE Transactions on Industrial Electronics, Vol. 67, No. 7, 5913-5923, 2020.
doi:10.1109/tie.2019.2952824        Google Scholar

17. Yu, Mingzhi and Zhonggen Wang, "Sensorless control of permanent magnet synchronous motors based on composite nonlinear functions and ESO-PLLs," Electrical Engineering, Vol. 108, No. 1, 46, 2026.
doi:10.1007/s00202-025-03432-w        Google Scholar

18. Yao, Guozhong, Xianxiang Wang, Zhengjiang Wang, and Yuhan Xiao, "Senseless control of permanent magnet synchronous motors based on new fuzzy adaptive sliding mode observer," Electronics, Vol. 12, No. 15, 3266, 2023.
doi:10.3390/electronics12153266        Google Scholar

19. Liu, Xin, Zhiwei Wang, Wenzhuo Wang, Yunling Lv, Bo Yuan, Shijie Wang, Wujing Li, Qiufang Li, Qiwen Zhang, and Qianchang Chen, "SMO-based sensorless control of a permanent magnet synchronous motor," Frontiers in Energy Research, Vol. 10, 839329, 2022.
doi:10.3389/fenrg.2022.839329        Google Scholar

20. Wang, Dongheng, Bingqiang Li, and Yiyun Zhao, "An adaptive SMO approach for low-chattering sensorless control of PMSM," IEEE Transactions on Power Electronics, Vol. 40, No. 10, 15329-15338, 2025.
doi:10.1109/tpel.2025.3535457        Google Scholar

21. Li, Yingjie and Xudong Liu, "Sensorless control of permanent magnet synchronous motor based on high-order sliding mode observer and improved PLL," Journal of Electrical Engineering, Vol. 18, No. 4, 96-105, 2023.
doi:10.11985/2023.04.011        Google Scholar

22. Li, Haiqun, Pengfei Zhi, Haifeng Wei, Yi Zhang, and Wanlu Zhu, "Research on sensorless control for permanent magnet synchronous motor based on ESO-PLL," 2025 44th Chinese Control Conference (CCC), Chongqing, China, Jul. 2025.
doi:10.23919/CCC64809.2025.11179464

23. Zou, Xinhong, Hongchang Ding, and Jinhong Li, "Sensorless control strategy of permanent magnet synchronous motor based on adaptive super-twisting algorithm sliding mode observer," Journal of Control, Automation and Electrical Systems, Vol. 35, No. 1, 163-179, 2024.
doi:10.1007/s40313-023-01054-w        Google Scholar