Vol. 165
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2028-01-26
Design and Execution of Miniaturized Multi-Band Antenna for Next-Generation Wireless Communication System
By
Progress In Electromagnetics Research C, Vol. 165, 118-130, 2026
Abstract
This paper describes the design methodology of a compact multiband microstrip patch antenna intended for next-generation wireless communication applications. The proposed antenna operates over seven distinct frequency bands: 1.25-1.32 GHz, 2.30-2.44 GHz, 2.50-2.75 GHz, 2.92-3.25 GHz, 3.40-3.65 GHz, 3.70-4.23 GHz, and 4.70-6.0 GHz. These operating bands support a wide range of wireless services, including LTE, 5G communications, Wi-MAX, ISM applications, radar systems, and broadband wireless communications. Multiband performance is achieved through the incorporation of three strategically placed slits in the radiating patch along with a square split-ring resonator (SSRR). By adjusting the dimensions of the slits and the position of the SSRR, the operating frequency bands can be effectively tuned. The proposed antenna occupies a compact footprint of 40 × 40 mm2 and consists of a radiating patch, a partial ground plane, and an SSRR structure. Simulation results demonstrate resonant frequencies at 1.3, 2.38, 2.66, 3.0, 3.5, 4.2, 4.9, and 5.7 GHz. Owing to its compact size, multiband capability, and simple structure, the proposed antenna offers advantages in terms of reduced cost, lower system complexity, and miniaturization, making it suitable for modern wireless communication systems.
Citation
Prasanna L. Zade, Sachin S. Khade, Deveshree Marotkar, Vaishali Dhede, Pravin Tajane, Pranjali M. Jumle, and Prabhakar Domaji Dorge, "Design and Execution of Miniaturized Multi-Band Antenna for Next-Generation Wireless Communication System," Progress In Electromagnetics Research C, Vol. 165, 118-130, 2026.
doi:10.2528/PIERC25110303
References

1. Balanis, Constantine A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2016.

2. Kumar, Girish and K. P. Ray, Broadband Microstrip Antennas, Artech House, 2003.

3. Garg, Ramesh, Microstrip Antenna Design Handbook, Artech House, 2001.

4. Gupta, Anupma, Meet Kumari, Manish Sharma, Mohammed H. Alsharif, Peerapong Uthansakul, Monthippa Uthansakul, and Shonak Bansal, "8-port MIMO antenna at 27 GHz for n261 band and exploring for body centric communication," PLoS ONE, Vol. 19, No. 6, e0305524, 2024.
doi:10.1371/journal.pone.0305524        Google Scholar

5. Malathy, E. M., I. R. Praveen Joe, and P. Ajitha, "Miniaturized dual-band metamaterial-loaded antenna for heterogeneous vehicular communication networks," IETE Journal of Research, Vol. 69, No. 5, 2436-2445, 2023.
doi:10.1080/03772063.2021.1892539        Google Scholar

6. Hakanoglu, Baris Gurcan, Burak Koc, Osman Sen, Husnu Yalduz, and Mustafa Turkmen, "Stub loaded patch antenna and a novel method for miniaturization at sub 6 GHz 5G and Wi-Fi frequencies," Advances in Electrical & Computer Engineering, Vol. 21, No. 2, 23-32, 2021.
doi:10.4316/aece.2021.02003        Google Scholar

7. Baena, Juan D., Ricardo Marqués, Francisco Medina, and Jesús Martel, "Artificial magnetic metamaterial design by using spiral resonators," Physical Review B, Vol. 69, No. 1, 014402, 2004.
doi:10.1103/physrevb.69.014402        Google Scholar

8. Zade, Prasanna L. and Sachin S. Khade, "Miniaturized novel multi resonance monopole planar antenna with slots, slits, split ring resonator," Progress In Electromagnetics Research C, Vol. 145, 75-82, 2024.
doi:10.2528/pierc24051102        Google Scholar

9. Mazen, Karima, Ahmed Emran, Ahmed S. Shalaby, and Ahmed Yahya, "Design of multi-band microstrip patch antennas for mid-band 5G wireless communication," International Journal of Advanced Computer Science and Applications(IJACSA), Vol. 12, No. 5, 459-469, 2021.
doi:10.14569/ijacsa.2021.0120557        Google Scholar

10. Gupta, Anupma, Vipan Kumar, Shonak Bansal, Mohammed H. Alsharif, Abu Jahid, and Ho-Shin Cho, "A miniaturized tri-band implantable antenna for ISM/WMTS/lower UWB/Wi-Fi frequencies," Sensors, Vol. 23, No. 15, 6989, 2023.
doi:10.3390/s23156989        Google Scholar

11. Aziz, Muhammad Afiq Abdul, Norhudah Seman, and T. Han Chua, "Microstrip antenna design with partial ground at frequencies above 20 GHz for 5G telecommunication systems," Indonesian Journal of Electrical Engineering and Computer Science, Vol. 15, No. 3, 1466-1473, Sep. 2019.
doi:10.11591/ijeecs.v15.i3.pp1466-1473        Google Scholar

12. Khade, Sachin S., Dinesh B. Bhoyar, Ketki Kotpalliwar, Chitra V. Bawankar, and Manish S. Kimmatkar, "Four element EC slot MIMO antenna for WLAN, Wi-Fi and 5G applications," Progress In Electromagnetics Research C, Vol. 139, 147-158, 2024.
doi:10.2528/PIERC23082201        Google Scholar

13. Kulkarni, Jayshri, Chow-Yen-Desmond Sim, Rajendra Talware, Vivek Deshpande, Abhijit Chitre, and Jaume Anguera, "Design and analysis of dual band tapered-fed monopole antenna for 5G and satellite applications," 2021 IEEE 18th India Council International Conference (INDICON), 1-6, Guwahati, India, 2021.
doi:10.1109/INDICON52576.2021.9691580

14. Baena, J. D., J. Bonache, F. Martín, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 1451-1461, Apr. 2005.
doi:10.1109/tmtt.2005.845211        Google Scholar

15. Ullah, Sadiq, Shaheen Ahmad, Burhan A. Khan, Farooq A. Tahir, and James A. Flint, "An hp-shape hexa-band antenna for multi-standard wireless communication systems," Wireless Networks, Vol. 25, No. 3, 1361-1369, 2019.
doi:10.1007/s11276-018-1760-x        Google Scholar

16. Tripathi, Shivesh, N. P. Pathak, and M. Parida, "Dual-band dual-beam microstrip patch antenna for intelligent transportation systems application," 2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), 1-5, Gorakhpur, India, 2018.
doi:10.1109/UPCON.2018.8596861

17. Li, Jian-Feng, Chun-Xu Mao, Duo-Long Wu, Liang-Hua Ye, and Gary Zhang, "A dual-beam wideband filtering patch antenna with absorptive band-edge radiation nulls," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 12, 8926-8931, 2021.
doi:10.1109/tap.2021.3097359        Google Scholar

18. Kannadhasan, S. and A. C. Shagar, "Design and analysis of U-Shaped micro strip patch antenna," 2017 Third International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB), 367-370, Chennai, India, 2017.
doi:10.1109/AEEICB.2017.7972333

19. Gupta, Manisha and Vinita Mathur, "Koch boundary on the square patch microstrip antenna for ultra wideband applications," Alexandria Engineering Journal, Vol. 57, No. 3, 2113-2122, Sep. 2018.
doi:10.1016/j.aej.2017.06.005        Google Scholar

20. Sarkar, D., K. Saurav, and K. V. Srivastava, "Multi-band microstrip-fed slot antenna loaded with split-ring resonator," Electronics Letters, Vol. 50, No. 21, 1498-1500, Oct. 2014.
doi:10.1049/el.2014.2625        Google Scholar

21. Raval, Falguni, Sweety Purohit, and Y. P. Kosta, "Dual-band wearable antenna using split ring resonator," Waves in Random and Complex Media, Vol. 26, No. 2, 235-242, 2016.
doi:10.1080/17455030.2015.1137374        Google Scholar

22. Taheri, Mohammad Mehdi Samadi, Abdolali Abdipour, and Gert Frolund Pedersen, "Compact penta band printed slot antenna for GSM, Bluetooth, WiMAX, 4G LTE, and WLAN applications," 2017 11th European Conference on Antennas and Propagation (EUCAP), 2152-2154, Paris, France, 19-24 March 2017.
doi:10.23919/EuCAP.2017.7928813

23. Xu, Bo, Jakob Helander, Andreas Ericsson, Zhinong Ying, Sailing He, Mats Gustafsson, and Daniel Sjöberg, "Investigation of planar near-field measurement of millimeter-wave antenna for 5G application," 2016 International Symposium on Antennas and Propagation (ISAP), 600-601, Okinawa, Japan, 2016.

24. Liu, HanJiang, RongLin Li, Yan Pan, XuLin Quan, Li Yang, and Liang Zheng, "A multi-broadband planar antenna for GSM/UMTS/LTE and WLAN/WiMAX handsets," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 5, 2856-2860, May 2014.
doi:10.1109/tap.2014.2308525        Google Scholar

25. Wang, Tuo, Ying-Zeng Yin, Jian Yang, Yong-Li Zhang, and Jiao-Jiao Xie, "Compact triple-band antenna using defected ground structure for WLAN/WiMAX applications," Progress In Electromagnetics Research Letters, Vol. 35, 155-164, 2012.
doi:10.2528/pierl12082814        Google Scholar

26. Janning, D. S. and B. A. Munk, "Effects of surface waves on the currents of truncated periodic arrays," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 9, 1254-1265, Sep. 2002.
doi:10.1109/tap.2002.801378        Google Scholar

27. Krishnan, Sivanand, Pankaj Sharma, and Ong Hwee Woon, "Antenna radiation pattern considerations for UWB localization," 2007 IEEE Antennas and Propagation Society International Symposium, 333-336, Honolulu, HI, USA, 2007.
doi:10.1109/APS.2007.4395498

28. Chaparala, Rishitej, Shaik Imamvali, Sreenivasulu Tupakula, Krishna Prakash, Shonak Bansal, Mohd Muzafar Ismail, and Ahmed Jamal Abdullah Al-Gburi, "Spoof surface plasmon polaritons-based feeder for a dielectric rod antenna at microwave frequencies," Progress In Electromagnetics Research M, Vol. 129, 23-32, 2024.
doi:10.2528/pierm24080403        Google Scholar

29. Chaparala, Rishitej, Shaik Imamvali, Sreenivasulu Tupakula, Krishna Prakash, Shonak Bansal, Mohd Muzafar Ismail, and Ahmed Jamal Abdullah Al-Gburi, "Spoof surface plasmon polaritons-based feeder for a dielectric rod antenna at microwave frequencies.," Progress In Electromagnetics Research M, Vol. 129, 23-32, 2024.
doi:10.2528/pierm24080403        Google Scholar