Vol. 165
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-01-18
Optimized NCP MIMO Antenna with Dual Diamond Slots for Enhanced Isolation in 5G Applications
By
Progress In Electromagnetics Research C, Vol. 165, 25-34, 2026
Abstract
This research paper presents a novel two-element Notched Circular Patch (NCP) antenna tailored for n78 5G NR band communication, resonating at a frequency of 3.5 GHz. The primary focus of this study is to enhance isolation using a simple antenna design with advanced optimization techniques. The proposed NCP antenna incorporates two diamond-shaped slots within a circular patch, designed to operate at n78 band or C-band. Through meticulous design and fabrication processes, the antenna achieves an inter-element spacing that is optimized with GA algorithm, and 1/4 of the ground structure is considered at the center of the patch, significantly improving its performance at 3.5 GHz, maintaining a VSWR of 1.1. The proposed 60 × 30 mm2 NCP antenna exhibits remarkable characteristics, including > -30 dB isolation, a reflection coefficient of -27 dB, and a gain of 4 dBi. These results underscore the effectiveness of the antenna design in reducing mutual coupling and enhancing isolation, which are essential for achieving reliable and efficient communication in 5G. The NCP MIMO antenna is thoroughly analyzed using characteristic mode analysis (CMA), and CMA parameters' influence on antenna performance is discussed. The design further highlights its practicality and potential for implementation in various wireless communication systems.
Citation
Rama Lakshmi Gali, and Madhavi Tatineni, "Optimized NCP MIMO Antenna with Dual Diamond Slots for Enhanced Isolation in 5G Applications," Progress In Electromagnetics Research C, Vol. 165, 25-34, 2026.
doi:10.2528/PIERC25120101
References

1. Luo, Shengyuan, Gert Frølund Pedersen, and Shuai Zhang, "Massive MIMO array design with high isolation by using decoupling cavity," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 70, No. 3, 974-978, Mar. 2023.
doi:10.1109/tcsii.2022.3216394        Google Scholar

2. Liu, Feng, Jiayin Guo, Luyu Zhao, Guan-Long Huang, Yingsong Li, and Yingzeng Yin, "Ceramic superstrate-based decoupling method for two closely packed antennas with cross-polarization suppression," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 3, 1751-1756, Mar. 2021.
doi:10.1109/tap.2020.3016388        Google Scholar

3. Tran, Huy Hung and Nghia Nguyen-Trong, "Performance enhancement of MIMO patch antenna using parasitic elements," IEEE Access, Vol. 9, 30011-30016, 2021.
doi:10.1109/access.2021.3058340        Google Scholar

4. Wen, Dingliang, Yang Hao, Hanyang Wang, and Hai Zhou, "Design of a MIMO antenna with high isolation for smartwatch applications using the theory of characteristic modes," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1437-1447, Mar. 2019.
doi:10.1109/tap.2018.2884849        Google Scholar

5. Luo, Shengyuan, Yingsong Li, Yinfeng Xia, and Liang Zhang, "A low mutual coupling antenna array with gain enhancement using metamaterial loading and neutralization line structure," Applied Computational Electromagnetics Society Journal (ACES), Vol. 34, No. 3, 411-418, 2019.        Google Scholar

6. Li, Jianxing, Xiaoke Zhang, Zhi Wang, Xiaoming Chen, Juan Chen, Yingsong Li, and Anxue Zhang, "Dual-band eight-antenna array design for MIMO applications in 5G mobile terminals," IEEE Access, Vol. 7, 71636-71644, 2019.
doi:10.1109/access.2019.2908969        Google Scholar

7. Aw, M. S., K. Ashwath, T. Ali, et al. "A compact two element MIMO antenna with improved isolation for wireless applications," Journal of Instrumentation, Vol. 14, No. 6, P06014, Jun. 2019.
doi:10.1088/1748-0221/14/06/p06014        Google Scholar

8. Chouhan, Sanjay, Debendra Kumar Panda, and Vivek Singh Kushwah, "Modified circular common element four-port multiple-input-multiple-output antenna using diagonal parasitic element," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 2, e21527, 2019.
doi:10.1002/mmce.21527        Google Scholar

9. Zhang, Yi-Ming, Shuai Zhang, Jia-Lin Li, and Gert Frølund Pedersen, "A transmission-line-based decoupling method for MIMO antenna arrays," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 5, 3117-3131, May 2019.
doi:10.1109/tap.2019.2900406        Google Scholar

10. Li, Ming-Yang, Yong-Ling Ban, Zi-Qiang Xu, Jinhong Guo, and Zhe-Feng Yu, "Tri-polarized 12-antenna MIMO array for future 5G smartphone applications," IEEE Access, Vol. 6, 6160-6170, Dec. 2017.
doi:10.1109/access.2017.2781705        Google Scholar

11. Sarkar, Debdeep and Kumar Vaibhav Srivastava, "A compact four-element MIMO/diversity antenna with enhanced bandwidth," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2469-2472, 2017.
doi:10.1109/lawp.2017.2724439        Google Scholar

12. Gali, Rama Lakshmi and Madhavi Tatineni, "Design of a dual-band H-cut circular antenna with various decoupling methods for 5G NR band," 2025 International Conference on Inventive Computation Technologies (ICICT), 1935-1939, Kirtipur, Nepal, Apr. 2025.
doi:10.1109/ICICT64420.2025.11005281

13. Talha, Mohammed Younus, Kamili Jagadeesh Babu, and Rabah W. Aldhaheri, "Design of a compact MIMO antenna system with reduced mutual coupling," International Journal of Microwave and Wireless Technologies, Vol. 8, No. 1, 117-124, Feb. 2016.
doi:10.1017/s1759078714001287        Google Scholar

14. Anitha, R., P. V. Vinesh, K. C. Prakash, P. Mohanan, and K. Vasudevan, "A compact quad element slotted ground wideband antenna for MIMO applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 10, 4550-4553, Oct. 2016.
doi:10.1109/tap.2016.2593932        Google Scholar

15. Wong, Kin-Lu, Jun-Yu Lu, Li-Yu Chen, Wei-Yu Li, and Yong-Ling Ban, "8-antenna and 16-antenna arrays using the quad-antenna linear array as a building block for the 3.5-GHz LTE MIMO operation in the smartphone," Microwave and Optical Technology Letters, Vol. 58, No. 1, 174-181, Jan. 2016.
doi:10.1002/mop.29527        Google Scholar

16. Radhi, Alaa H., R. Nilavalan, Yi Wang, H. S. Al-Raweshidy, Amira A. Eltokhy, and Nur Ab Aziz, "Mutual coupling reduction with a wideband planar decoupling structure for UWB-MIMO antennas," International Journal of Microwave and Wireless Technologies, Vol. 10, No. 10, 1143-1154, Jul. 2018.
doi:10.1017/s1759078718001010        Google Scholar

17. Alsultan, Raghad Ghalib Saadallah and Gölge Ögücü Yetkin, "Mutual coupling reduction of E-shaped MIMO antenna with matrix of C-shaped resonators," International Journal of Antennas and Propagation, Vol. 2018, No. 1, 4814176, Feb. 2018.
doi:10.1155/2018/4814176        Google Scholar

18. Sharawi, Mohammad S., Ahmed B. Numan, Muhammad U. Khan, and Daniel N. Aloi, "A dual-element dual-band MIMO antenna system with enhanced isolation for mobile terminals," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1006-1009, Aug. 2012.
doi:10.1109/lawp.2012.2214433        Google Scholar

19. Zhao, Xing, Swee Ping Yeo, and Ling Chuen Ong, "Decoupling of inverted-F antennas with high-order modes of ground plane for 5G mobile MIMO platform," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 9, 4485-4495, Sep. 2018.
doi:10.1109/tap.2018.2851381        Google Scholar

20. Zhu, Jianfeng, Shufang Li, Botao Feng, Li Deng, and Sixing Yin, "Compact dual-polarized UWB quasi-self-complementary MIMO/diversity antenna with band-rejection capability," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 905-908, Sep. 2015.
doi:10.1109/lawp.2015.2479622        Google Scholar

21. Saad, A. A. R., "Approach for improving inter-element isolation of orthogonally polarised MIMO slot antenna over ultra-wide bandwidth," Electronics Letters, Vol. 54, No. 18, 1062-1064, Sep. 2018.
doi:10.1049/el.2018.5346        Google Scholar

22. Shehata, Mohamed, Mohamed Sameh Said, and Hassan Mostafa, "Dual notched band quad-element MIMO antenna with multitone interference suppression for IR-UWB wireless applications," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 11, 5737-5746, 2018.
doi:10.1109/tap.2018.2868725        Google Scholar

23. Hasan, Md. Mhedi, Mohammad Tariqul Islam, Touhidul Alam, Ahmed Alzamil, and Mohamed S. Soliman, "Electromagnetic coupling shielding in compact MIMO antenna using symmetric T-shaped metamaterial structure for 5G communications," Optics & Laser Technology, Vol. 169, 110046, 2024.
doi:10.1016/j.optlastec.2023.110046        Google Scholar

24. Puri, Vishal and Hari Shankar Singh, "Design of an isolation improved MIMO antenna using metasurface based absorber for wireless applications," Optik, Vol. 259, 168963, 2022.
doi:10.1016/j.ijleo.2022.168963        Google Scholar

25. Zeng, Wen-Feng and Fu-Chang Chen, "Wideband high-isolation antenna pair for 5G smartphones using multiple characteristic modes," AEU --- International Journal of Electronics and Communications, Vol. 170, 154856, 2023.
doi:10.1016/j.aeue.2023.154856        Google Scholar