Vol. 165
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-01-21
GPR-SAR Imaging of Underground Pipelines Using Adaptive Threshold-Enhanced CBP Algorithm
By
Progress In Electromagnetics Research C, Vol. 165, 61-67, 2026
Abstract
An adaptive threshold enhanced-Cross-correlation Back Projection (CBP) imaging algorithm is presented for artifacts suppression and accuracy improvement of Synthetic Aperture Radar (SAR) imaging in Ground Penetrating Radar (GPR) applications. B-Scan profiles of underground pipelines are obtained by using the open-source GprMax simulator, and they are then preprocessed with the method of background subtraction to remove direct waves. Adaptive threshold scheme using Hilbert transform is adopted to obtain the envelopes of B-Scan profiles after removing direct waves. GPR-SAR imaging of underground pipelines is simulated and discussed in detail for different pipe parameters and soil environment. The simulated results demonstrate that the adaptive threshold enhanced-CBP algorithm achieves focused pipeline images with sub-wavelength localization accuracy, enabling geometric contour reconstruction for non-metallic pipelines with strong robustness in Peplinski's soil and multiple target scenarios.
Citation
Qiang Guo, Peng-Ju Yang, Rui Wu, and Yuqiang Zhang, "GPR-SAR Imaging of Underground Pipelines Using Adaptive Threshold-Enhanced CBP Algorithm," Progress In Electromagnetics Research C, Vol. 165, 61-67, 2026.
doi:10.2528/PIERC25102703
References

1. Demirci, Sevket, Enes Yigit, Ismail H. Eskidemir, and Caner Ozdemir, "Ground penetrating radar imaging of water leaks from buried pipes based on back-projection method," NDT & E International, Vol. 47, 35-42, 2012.
doi:10.1016/j.ndteint.2011.12.008        Google Scholar

2. Ren, Kai and Robert J. Burkholder, "A uniform diffraction tomographic imaging algorithm for near-field microwave scanning through stratified media," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 12, 5198-5207, 2016.
doi:10.1109/tap.2016.2617358        Google Scholar

3. Phillips, Louis C., Laurence A. Eichel, and Stephen M. Evanko, "Ultrawideband SAR processing with the range migration algorithm and the imsyn processor," SPIE's 1996 International Symposium on Optical Science, Engineering, and Instrumentation, Vol. 2845, 205-210, 1996.
doi:10.1117/12.257224

4. Mast, Jeffrey E. and Erik M. Johansson, "Three-dimensional ground-penetrating radar imaging using multifrequency diffraction tomography," SPIE's 1994 International Symposium on Optics, Imaging, and Instrumentation, Vol. 2275, 196-203, 1994.
doi:10.1117/12.186716

5. Schmelzbach, C., J. Tronicke, and P. Dietrich, "Three-dimensional hydrostratigraphic models from ground-penetrating radar and direct-push data," Journal of Hydrology, Vol. 398, No. 3-4, 235-245, 2011.
doi:10.1016/j.jhydrol.2010.12.023        Google Scholar

6. Leuschen, C. J. and R. G. Plumb, "A matched-filter-based reverse-time migration algorithm for ground-penetrating radar data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 5, 929-936, 2001.
doi:10.1109/36.921410        Google Scholar

7. Catapano, Ilaria, Andrea Randazzo, Evert Slob, and Raffaele Solimene, "GPR imaging via qualitative and quantitative approaches," Civil Engineering Applications of Ground Penetrating Radar, 239-280, Springer, 2015.
doi:10.1007/978-3-319-04813-0_10        Google Scholar

8. Foo, Senglee and S. Kashyap, "Cross-correlated back projection for UWB radar imaging," IEEE Antennas and Propagation Society Symposium, 2004., Vol. 2, 1275-1278, Monterey, CA, USA, 2004.
doi:10.1109/APS.2004.1330417

9. Lim, Hooi Been, Nguyen Thi Tuyet Nhung, Er-Ping Li, and Nguyen Duc Thang, "Confocal microwave imaging for breast cancer detection: Delay-multiply-and-sum image reconstruction algorithm," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 6, 1697-1704, 2008.
doi:10.1109/tbme.2008.919716        Google Scholar

10. Zhou, Lin, Chunlin Huang, and Yi Su, "A fast back-projection algorithm based on cross correlation for GPR imaging," IEEE Geoscience and Remote Sensing Letters, Vol. 9, No. 2, 228-232, 2012.
doi:10.1109/lgrs.2011.2165523        Google Scholar

11. Guo, Qiang, Pengju Yang, Rui Wu, and Yuqiang Zhang, "Numerical modeling of GPR for underground multi-pipes detection by combining gprmax and deep learning model," Progress In Electromagnetics Research M, Vol. 128, 99-113, 2024.
doi:10.2528/pierm24062603        Google Scholar

12. Rezaei, A., H. Hassani, P. Moarefvand, and A. Golmohammadi, "Determination of unstable tectonic zones in C-North deposit, Sangan, NE Iran using GPR method: Importance of structural geology," Journal of Mining and Environment, Vol. 10, No. 1, 177-195, 2019.
doi:10.22044/jme.2019.7378.1590        Google Scholar

13. Linck, Roland, Mukta Kale, Andreas Stele, and Joachim Schlechtriem, "Testing the applicability of drone-based ground-penetrating radar for archaeological prospection," Remote Sensing, Vol. 17, No. 9, 1498, 2025.
doi:10.3390/rs17091498        Google Scholar

14. Jamshidi-Zarmehri, Hojjat, Amir Akbari, Mohammad Labadlia, Kam Eucharist Kedze, Jafar Shaker, Gaozhi Xiao, and Rony E. Amaya, "A review on through-wall communications: Wall characterization, applications, technologies, and prospects," IEEE Access, Vol. 11, 127837-127854, 2023.
doi:10.1109/access.2023.3331743        Google Scholar

15. Hoxha, Ejup, Jinglun Feng, Diar Sanakov, and Jizhong Xiao, "Robotic inspection and subsurface defect mapping using impact-echo and ground penetrating radar," IEEE Robotics and Automation Letters, Vol. 8, No. 8, 4943-4950, 2023.
doi:10.1109/lra.2023.3290386        Google Scholar

16. Warren, Craig, Antonios Giannopoulos, and Iraklis Giannakis, "GprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar," Computer Physics Communications, Vol. 209, 163-170, 2016.
doi:10.1016/j.cpc.2016.08.020        Google Scholar

17. Ramadhan, Aditya Rifky, Erfansyah Ali, and A. A. Pramudita, "The effect ricker wavelet of duty cycle adjustment on GPR detection result," JMECS (Journal of Measurements, Electronics, Communications, and Systems), Vol. 8, No. 1, 17-22, 2021.
doi:10.25124/jmecs.v8i1.2872        Google Scholar

18. Li, Jianzhong, Cédric Le Bastard, Yide Wang, Gang Wei, Biyun Ma, and Meng Sun, "Enhanced GPR signal for layered media time-delay estimation in low-SNR scenario," IEEE Geoscience and Remote Sensing Letters, Vol. 13, No. 3, 299-303, 2016.
doi:10.1109/lgrs.2015.2502662        Google Scholar

19. Sharma, Prabhat, Bambam Kumar, Dharmendra Singh, and S. P. Gaba, "Critical analysis of background subtraction techniques on real GPR data," Defence Science Journal, Vol. 67, No. 5, 559-571, 2017.
doi:10.14429/dsj.67.10048        Google Scholar

20. Sharma, Prabhat, Bambam Kumar, and Dharmendra Singh, "Development of adaptive threshold and data smoothening algorithm for GPR imaging," Defence Science Journal, Vol. 68, No. 3, 316-325, 2018.
doi:10.14429/dsj.68.12354        Google Scholar

21. Venkatachalam, Anbu Selvam, Xianlei Xu, Dryver Huston, and Tian Xia, "Development of a new high speed dual-channel impulse ground penetrating radar," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 7, No. 3, 753-760, 2014.
doi:10.1109/jstars.2013.2280995        Google Scholar