Vol. 165
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-01-20
Design and Fabrication of a New Triple-Band Bandpass Filter with Adjustable Bandwidth Passbands Depending on Coupling
By
Progress In Electromagnetics Research C, Vol. 165, 48-60, 2026
Abstract
In this research, a simple design with a compact size of a triple-band bandpass filter (BPF) based on SIW is proposed. The proposed design consists of a main SIW cavity combined with two others-secondary SIW cavities. The three passbands of the proposed BPF are formed based on the center frequencies (CFs) of the four modes given by the main SIW cavity and two transmission poles (TP1 and TP2) achieved with the secondary SIW cavity. The SIW modes achieved with the main SIW cavity are TE101, TE201, and TE301 addition to the suppressed mode, and those modes are realized by the perturbation of seven metallic vias. The coupling of the TP1 with the suppressed mode realizes the first passband of the filter proposed with a bandwidth of 0.53 GHz. Vertical CPW slots are etched at the main SIW cavity for coupling TE101 and TE201 to form the second passband with a bandwidth of 1.3 GHz. Horizontal CPW slots are etched in the two rectangular secondary SIW cavities to join the TP2 with TE301 mode for realizing the third passband with a bandwidth of 1.2 GHz. Finally, an adjustable bandwidth filter with CFs of 6.9/10.1/13.3 GHz, respectively, has been achieved. Also, six transmission zeros (TZs) are achieved in the operation frequency range (6-16 GHz), which improves the selectivity of the filter. The proposed filter is modeled with an approximate equivalent circuit, and the prototype of the filter is fabricated and tested to demonstrate its excellent performance. A good agreement was realized among simulation, equivalent circuit LC model, and measurement S-parameters, which proves and validates the operation of the proposed triple-band BPF. The multiple advantages of the proposed filter, such as a simple structure, compactness (1.29λg × 1.62λg), selectivity, and high performance, make it a promising candidate for multi-tasking communication systems.
Citation
Obaida Oulad Haddar, Mohammed Boulesbaa, and Tarek Djerafi, "Design and Fabrication of a New Triple-Band Bandpass Filter with Adjustable Bandwidth Passbands Depending on Coupling," Progress In Electromagnetics Research C, Vol. 165, 48-60, 2026.
doi:10.2528/PIERC25092906
References

1. Jia, Hongting, Kuniaki Yoshitomi, and Kiyotoshi Yasumoto, "Rigorous and fast convergent analysis of a rectangular waveguide coupler slotted in common wall," Progress In Electromagnetics Research, Vol. 46, 245-264, 2004.
doi:10.2528/pier03100102        Google Scholar

2. Sun, Kae-Oh, Sung-Jin Ho, Chih-Chuan Yen, and D. Van Der Weide, "A compact branch-line coupler using discontinuous microstrip lines," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 8, 519-520, 2005.
doi:10.1109/lmwc.2005.852789        Google Scholar

3. Elsherbini, Adel and Kamal Sarabandi, "Compact directive ultra-wideband rectangular waveguide based antenna for radar and communication applications," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 2203-2209, 2012.
doi:10.1109/tap.2012.2189727        Google Scholar

4. Aboualalaa, Mohamed, Adel B. Abdel-Rahman, Ahmed Allam, Hala Elsadek, and Ramesh K. Pokharel, "Design of a dual-band microstrip antenna with enhanced gain for energy harvesting applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1622-1626, 2017.
doi:10.1109/lawp.2017.2654353        Google Scholar

5. Zhao, X. H., J. F. Bao, G. C. Shan, Y. J. Du, Y. B. Zheng, Y. Wen, and C. H. Shek, "D-band micromachined silicon rectangular waveguide filter," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 5, 230-232, 2012.
doi:10.1109/lmwc.2012.2193121        Google Scholar

6. Shen, Wei, Xiao-Wei Sun, and Wen-Yan Yin, "A novel microstrip filter using three-mode stepped impedance resonator (TSIR)," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 12, 774-776, 2009.
doi:10.1109/lmwc.2009.2033495        Google Scholar

7. Pozar, David M., Microwave Engineering: Theory and Techniques, John Wiley & Sons, 2005.

8. Rhbanou, Ahmed, Mohamed Sabbane, and Seddik Bri, "Design of dual-mode substrate integrated waveguide band-pass filters," Circuits and Systems, Vol. 6, No. 12, 257-267, 2015.
doi:10.4236/cs.2015.612026        Google Scholar

9. Pilote, A. J., K. A. Leahy, B. A. Flanik, and K. A. Zaki, "Waveguide filters having a layered dielectric structure," U.A. Patent, No. 5, 382931, Jan. 1995.

10. Boulesbaa, Mohammed, Tarek Djerafi, Ahmed Bouchekhlal, and Boualem Mekimah, "Design of a directional coupler based on SIW technology for X band applications," 2020 1st International Conference on Communications, Control Systems and Signal Processing (CCSSP), 85-89, El Oued, Algeria, 2020.
doi:10.1109/CCSSP49278.2020.9151478

11. Hong, Jia-Shen G. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, 2004.
doi:10.1002/0471221619

12. Wu, Lin-Sheng, Jun-Fa Mao, Wen-Yan Yin, and Yong-Xin Guo, "A dual-band filter using stepped-impedance resonator (SIR) embedded into substrate integrated waveguide (SIW)," 2010 IEEE Electrical Design of Advanced Package & Systems Symposium, 1-4, Singapore, 2010.
doi:10.1109/EDAPS.2010.5683025

13. Dong, Y., C. T. M. Wu, and T. Itoh, "Miniaturised multi-band substrate integrated waveguide filters using complementary split-ring resonators," IET Microwaves, Antennas & Propagation, Vol. 6, No. 6, 611-620, 2012.
doi:10.1049/iet-map.2011.0448        Google Scholar

14. Zhang, Hao, Wei Kang, and Wen Wu, "Miniaturized dual-band differential filter based on CSRR-loaded dual-mode SIW cavity," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 10, 897-899, 2018.
doi:10.1109/lmwc.2018.2867082        Google Scholar

15. Guo, Xin, Lei Zhu, and Wen Wu, "Design method for multiband filters with compact configuration in substrate integrated waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 6, 3011-3018, 2018.
doi:10.1109/tmtt.2018.2830337        Google Scholar

16. Zhou, Kang, Chunxia Zhou, and Wen Wu, "Substrate-integrated waveguide triple-band filter with improved frequency and bandwidth allocations," Electronics Letters, Vol. 54, No. 19, 1132-1134, 2018.
doi:10.1049/el.2018.5758        Google Scholar

17. Xie, Hao-Wei, Kang Zhou, Chun-Xia Zhou, and Wen Wu, "Substrate-integrated waveguide triple-band bandpass filters using triple-mode cavities," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 6, 2967-2977, 2018.
doi:10.1109/tmtt.2018.2833462        Google Scholar

18. Liu, Yi-Jie, Gang Zhang, Shi-Cheng Liu, and Ji-Quan Yang, "Compact triple-band filter with adjustable passbands on one substrate integrated waveguide square resonant cavity," Microwave and Optical Technology Letters, Vol. 62, No. 12, 3709-3715, 2020.
doi:10.1002/mop.32491        Google Scholar

19. Li, Daotong, Wei Luo, Xiaoquan Chen, Ying Liu, Kai-Da Xu, and Qiang Chen, "Miniaturized dual-/tri-/quad-band bandpass filters using perturbed multimode SIW cavity," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 13, No. 10, 1685-1693, 2023.
doi:10.1109/tcpmt.2023.3311439        Google Scholar

20. Namanathan, Praveena and Gunavathi Nagarajan, "Realization of dual-mode, high-selectivity SIW cavity bandpass filter by perturbing circular shape vias," Applied Physics A, Vol. 128, No. 9, 773, 2022.
doi:10.1007/s00339-022-05918-x        Google Scholar

21. Lin, Li-Jing, Min-Hua Ho, and Wei-Qin Xu, "Design of compact suspended stripline bandpass filters with wide stopband," Microwave and Optical Technology Letters, Vol. 50, No. 4, 865-868, 2008.
doi:10.1002/mop.23250        Google Scholar

22. Omar, Amjad A., Nihad I. Dib, Khelifa Hettak, Maximilian C. Scardelletti, and Raed M. Shubair, "Design of coplanar waveguide elliptic low pass filters," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 19, No. 5, 540-548, 2009.
doi:10.1002/mmce.20376        Google Scholar

23. Zheng, Shao Yong, Zhi Li Su, Yong Mei Pan, Zeeshan Qamar, and Derek Ho, "New dual-/tri-band bandpass filters and diplexer with large frequency ratio," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 6, 2978-2992, 2018.
doi:10.1109/tmtt.2018.2833862        Google Scholar

24. Yang, Zeng, Bin You, and Guoqing Luo, "Dual-/tri-band bandpass filter using multimode rectangular SIW cavity," Microwave and Optical Technology Letters, Vol. 62, No. 3, 1098-1102, 2020.
doi:10.1002/mop.32145        Google Scholar

25. Zhang, Junjie, Qing Liu, Dongfang Zhou, and Dewei Zhang, "Single- and triple-band bandpass filters using novel perturbed isosceles right-angled triangular SIW cavities," IET Microwaves, Antennas & Propagation, Vol. 15, No. 3, 241-252, 2021.
doi:10.1049/mia2.12034        Google Scholar

26. Ren, Baoping, Chunhua Qin, and Xuehui Guan, "Compact dual- and triple-wideband filters using interdigital spoof surface plasmon polaritons," IEEE Microwave and Wireless Technology Letters, Vol. 35, No. 1, 51-54, 2025.
doi:10.1109/lmwt.2024.3484749        Google Scholar

27. Liao, Qingqing, Guangpu Tang, Tong Xiao, Chengguo Liu, Lifeng Huang, and Hongguang Wang, "Design of 5G-advanced and beyond millimeter-wave filters based on hybrid SIW-SSPP and metastructures," Electronics, Vol. 14, No. 15, 3026, 2025.
doi:10.3390/electronics14153026        Google Scholar