Vol. 165
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-01-21
High-Resolution Brain Source Localization for BCI Applications Using a Deep Learning-Based Direct Inversion Approach on EEG Data
By
Progress In Electromagnetics Research C, Vol. 165, 68-78, 2026
Abstract
This paper presents a novel high-resolution brain source reconstruction method for Brain-Computer Interface (BCI) applications using a deep learning-based direct inversion approach. The proposed framework integrates electroencephalography (EEG) data simulated via the FieldTrip toolbox and leverages a modified U-Net architecture trained to directly estimate the active and inactive cortical source regions. Unlike traditional inverse methods such as Minimum Norm Estimation (MNE), LORETA, and Lasso the proposed method bypasses the computational complexity of analytical solutions and offers faster inference times once trained. Experimental results using a database of 50,000 synthetic models demonstrate a reconstruction accuracy of up to 61.66% under optimized conditions, with a validation loss of 0.6372 and an F1 score of 61.12%. The method shows improved detection of active brain regions in central cortical areas and delivers robust spatial reconstructions compared to conventional numerical techniques. Although performance on certain edge cases remains limited, the proposed framework offers a promising direction for scalable, real-time source localization in diagnostic and neurorehabilitation applications.
Citation
Babak Ojaroudi Parchin, Mehdi Nooshyar, and Mohammad Ojaroudi, "High-Resolution Brain Source Localization for BCI Applications Using a Deep Learning-Based Direct Inversion Approach on EEG Data," Progress In Electromagnetics Research C, Vol. 165, 68-78, 2026.
doi:10.2528/PIERC25082003
References

1. Zorzos, Ioannis, Ioannis Kakkos, Errikos M. Ventouras, and George K. Matsopoulos, "Advances in electrical source imaging: A review of the current approaches, applications and challenges," Signals, Vol. 2, No. 3, 378-391, 2021.
doi:10.3390/signals2030024        Google Scholar

2. Vorwerk, Johannes, Robert Oostenveld, Maria Carla Piastra, Lilla Magyari, and Carsten H. Wolters, "The fieldtrip-simbio pipeline for EEG forward solutions," Biomedical Engineering Online, Vol. 17, No. 1, 37, 2018.
doi:10.1186/s12938-018-0463-y        Google Scholar

3. Waldert, Stephan, Hubert Preissl, Evariste Demandt, Christoph Braun, Niels Birbaumer, Ad Aertsen, and Carsten Mehring, "Hand movement direction decoded from MEG and EEG," Journal of Neuroscience, Vol. 28, No. 4, 1000-1008, 2008.
doi:10.1523/jneurosci.5171-07.2008        Google Scholar

4. Ahn, S., D. Kim, J. H. Hong, and S. C. Jun, "Effect of realistic human head modelling on brain source distribution," Electronics Letters, Vol. 48, No. 18, 1095-1097, 2012.
doi:10.1049/el.2012.1569        Google Scholar

5. Khemakhem, Rafik, Wassim Zouch, A. Ben Hamida, Abdelmalik Taleb-Ahmed, and Imed Feki, "EEG source localization using the inverse problem methods," IJCSNS International Journal of Computer Science and Network Security, Vol. 9, No. 4, 408, 2009.        Google Scholar

6. Pantazis, Dimitrios and Amir Adler, "MEG source localization via deep learning," Sensors, Vol. 21, No. 13, 4278, 2021.
doi:10.3390/s21134278        Google Scholar

7. Borra, Davide, Francesco Bossi, Davide Rivolta, and Elisa Magosso, "Deep learning applied to EEG source-data reveals both ventral and dorsal visual stream involvement in holistic processing of social stimuli," Scientific Reports, Vol. 13, No. 1, 7365, 2023.
doi:10.1038/s41598-023-34487-z        Google Scholar

8. Abibullaev, Berdakh, Aigerim Keutayeva, and Amin Zollanvari, "Deep learning in EEG-based BCIs: A comprehensive review of transformer models, advantages, challenges, and applications," IEEE Access, Vol. 11, 127271-127301, 2023.
doi:10.1109/access.2023.3329678        Google Scholar

9. Sun, Rui, Abbas Sohrabpour, Gregory A. Worrell, and Bin He, "Deep neural networks constrained by neural mass models improve electrophysiological source imaging of spatiotemporal brain dynamics," Proceedings of the National Academy of Sciences, Vol. 119, No. 31, e2201128119, 2022.
doi:10.1073/pnas.2201128119        Google Scholar

10. Oostenveld, Robert, Pascal Fries, Eric Maris, and Jan-Mathijs Schoffelen, "FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data," Computational Intelligence and Neuroscience, Vol. 2011, No. 1, 156869, 2011.
doi:10.1155/2011/156869        Google Scholar

11. Knösche, Thomas R. and Jens Haueisen, EEG/MEG Source Reconstruction, Springer, 2022.
doi:10.1007/978-3-030-74918-7

12. Morik, Marco, Ali Hashemi, Klaus-Robert Müller, Stefan Haufe, and Shinichi Nakajima, "Enhancing brain source reconstruction through physics-informed 3D neural networks," ArXiv Preprint ArXiv:2411.00143, 2024.
doi:10.48550/arXiv.2411.00143        Google Scholar

13. Raissi, M., P. Perdikaris, and G. E. Karniadakis, "Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations," Journal of Computational Physics, Vol. 378, 686-707, 2019.
doi:10.1016/j.jcp.2018.10.045        Google Scholar

14. Enßlin, Torsten A., Mona Frommert, and Francisco S. Kitaura, "Information field theory for cosmological perturbation reconstruction and nonlinear signal analysis," Physical Review D, Vol. 80, No. 10, 105005, 2009.
doi:10.1103/physrevd.80.105005        Google Scholar

15. Nielsen, Frank, "An elementary introduction to information geometry," Entropy, Vol. 22, No. 10, 1100, 2020.
doi:10.3390/e22101100        Google Scholar