1. Zorzos, Ioannis, Ioannis Kakkos, Errikos M. Ventouras, and George K. Matsopoulos, "Advances in electrical source imaging: A review of the current approaches, applications and challenges," Signals, Vol. 2, No. 3, 378-391, 2021.
doi:10.3390/signals2030024 Google Scholar
2. Vorwerk, Johannes, Robert Oostenveld, Maria Carla Piastra, Lilla Magyari, and Carsten H. Wolters, "The fieldtrip-simbio pipeline for EEG forward solutions," Biomedical Engineering Online, Vol. 17, No. 1, 37, 2018.
doi:10.1186/s12938-018-0463-y Google Scholar
3. Waldert, Stephan, Hubert Preissl, Evariste Demandt, Christoph Braun, Niels Birbaumer, Ad Aertsen, and Carsten Mehring, "Hand movement direction decoded from MEG and EEG," Journal of Neuroscience, Vol. 28, No. 4, 1000-1008, 2008.
doi:10.1523/jneurosci.5171-07.2008 Google Scholar
4. Ahn, S., D. Kim, J. H. Hong, and S. C. Jun, "Effect of realistic human head modelling on brain source distribution," Electronics Letters, Vol. 48, No. 18, 1095-1097, 2012.
doi:10.1049/el.2012.1569 Google Scholar
5. Khemakhem, Rafik, Wassim Zouch, A. Ben Hamida, Abdelmalik Taleb-Ahmed, and Imed Feki, "EEG source localization using the inverse problem methods," IJCSNS International Journal of Computer Science and Network Security, Vol. 9, No. 4, 408, 2009. Google Scholar
6. Pantazis, Dimitrios and Amir Adler, "MEG source localization via deep learning," Sensors, Vol. 21, No. 13, 4278, 2021.
doi:10.3390/s21134278 Google Scholar
7. Borra, Davide, Francesco Bossi, Davide Rivolta, and Elisa Magosso, "Deep learning applied to EEG source-data reveals both ventral and dorsal visual stream involvement in holistic processing of social stimuli," Scientific Reports, Vol. 13, No. 1, 7365, 2023.
doi:10.1038/s41598-023-34487-z Google Scholar
8. Abibullaev, Berdakh, Aigerim Keutayeva, and Amin Zollanvari, "Deep learning in EEG-based BCIs: A comprehensive review of transformer models, advantages, challenges, and applications," IEEE Access, Vol. 11, 127271-127301, 2023.
doi:10.1109/access.2023.3329678 Google Scholar
9. Sun, Rui, Abbas Sohrabpour, Gregory A. Worrell, and Bin He, "Deep neural networks constrained by neural mass models improve electrophysiological source imaging of spatiotemporal brain dynamics," Proceedings of the National Academy of Sciences, Vol. 119, No. 31, e2201128119, 2022.
doi:10.1073/pnas.2201128119 Google Scholar
10. Oostenveld, Robert, Pascal Fries, Eric Maris, and Jan-Mathijs Schoffelen, "FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data," Computational Intelligence and Neuroscience, Vol. 2011, No. 1, 156869, 2011.
doi:10.1155/2011/156869 Google Scholar
11. Knösche, Thomas R. and Jens Haueisen, EEG/MEG Source Reconstruction, Springer, 2022.
doi:10.1007/978-3-030-74918-7
12. Morik, Marco, Ali Hashemi, Klaus-Robert Müller, Stefan Haufe, and Shinichi Nakajima, "Enhancing brain source reconstruction through physics-informed 3D neural networks," ArXiv Preprint ArXiv:2411.00143, 2024.
doi:10.48550/arXiv.2411.00143 Google Scholar
13. Raissi, M., P. Perdikaris, and G. E. Karniadakis, "Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations," Journal of Computational Physics, Vol. 378, 686-707, 2019.
doi:10.1016/j.jcp.2018.10.045 Google Scholar
14. Enßlin, Torsten A., Mona Frommert, and Francisco S. Kitaura, "Information field theory for cosmological perturbation reconstruction and nonlinear signal analysis," Physical Review D, Vol. 80, No. 10, 105005, 2009.
doi:10.1103/physrevd.80.105005 Google Scholar
15. Nielsen, Frank, "An elementary introduction to information geometry," Entropy, Vol. 22, No. 10, 1100, 2020.
doi:10.3390/e22101100 Google Scholar