Vol. 165
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-01-18
Transmission-Line Dual-Band Absorptive Bandstop Filter with Two Input Lossy Step-Impedance Stubs
By
Progress In Electromagnetics Research C, Vol. 165, 18-24, 2026
Abstract
In this paper, a novel planar dual-band absorptive bandstop filter (ABSF) based on transmission lines is proposed. The filter structure is composed of multiple transmission lines and two chip resistors, which endows it with distinct advantages including multiple transmission zeros, high-selectivity dual-bandstop performance. Through formula derivations, the specific positions of the four transmission zeros within the operating frequency are precisely determined. Experimental measurement results demonstrate that the -10 dB fractional bandwidth of the first stopband is 50.27% (from 0.7 GHz to 1.17 GHz), while that of the second stopband reaches 13.18% (from 3.33 GHz to 3.8 GHz). Across the entire frequency, the insertion loss S21 achieves a minimum of -45.20 dB at 1 GHz, and the return loss S11 attains a maximum of -10.27 dB at 3.94 GHz. The physical dimensions of the filter are 102 mm × 26 mm (0.77λ0 × 0.20λ0).
Citation
Jiapei Dong, Xiaoying Zuo, Mengxin He, Yajian Li, Juntao Cao, and Zelin Sun, "Transmission-Line Dual-Band Absorptive Bandstop Filter with Two Input Lossy Step-Impedance Stubs," Progress In Electromagnetics Research C, Vol. 165, 18-24, 2026.
doi:10.2528/PIERC25111306
References

1. Gu, Yuhang, Shanshan Xue, Wenzhong Sun, Taiyang Xie, Xiaolong Wang, and Chun-Ping Chen, "A reconfigurable single-/dual-bandstop filter with controllable equal-ripple performance," Applied Sciences, Vol. 14, No. 13, 5837, 2024.
doi:10.3390/app14135837        Google Scholar

2. Cai, Ting, Chang Chen, and Fujiang Lin, "Single and multiband bandstop filters with hybrid transmission-line/SAW-resonator transversal filtering sections," 2023 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, Qingdao, China, 2023.
doi:10.1109/ICMMT58241.2023.10276918

3. Yang, Danyu, Hanyu Tian, and Yuandan Dong, "Miniaturized reciprocal DMS-DGS unit and its application to single-/dual-band bandstop filters," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 70, No. 12, 4299-4303, 2023.
doi:10.1109/tcsii.2023.3292136        Google Scholar

4. Kalyanarao, B. and R. Ramana Reddy, "Lumped-element based tunable bandstop filter for airborne UHF communication system," 2023 IEEE Wireless Antenna and Microwave Symposium (WAMS), 1-4, Ahmedabad, India, 2023.
doi:10.1109/WAMS57261.2023.10242902

5. Elabd, Rania H., "Compact dual-port MIMO filtenna-based DMS with high isolation for C-band and X-band applications," EURASIP Journal on Wireless Communications and Networking, Vol. 2023, No. 1, 110, 2023.
doi:10.1186/s13638-023-02319-3        Google Scholar

6. Elabd, Rania H. and Amr H. Hussein, "Efficient design of a wideband tunable microstrip filtenna for spectrum sensing in cognitive radio systems," EURASIP Journal on Wireless Communications and Networking, Vol. 2023, No. 1, 109, 2023.
doi:10.1186/s13638-023-02321-9        Google Scholar

7. Lu, Qi, Xianliang Wu, and Chao Wang, "Compact broadband absorptive bandstop filter based on microstrip," Journal of Physics: Conference Series, Vol. 1651, No. 1, 012104, 2020.
doi:10.1088/1742-6596/1651/1/012104

8. Lee, Jongheun and Juseop Lee, "Distributed-element reflectionless bandstop filter with a broadband impedance matching," IEEE Microwave and Wireless Components Letters, Vol. 30, No. 6, 561-564, 2020.
doi:10.1109/lmwc.2020.2990986        Google Scholar

9. Lee, Jongheun and Juseop Lee, "Transmission-line absorptive bandstop filters with wide passband: Synthesis and design," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 12, 5371-5380, 2021.
doi:10.1109/tmtt.2021.3116083        Google Scholar

10. Kong, Mengdan, Yongle Wu, Zheng Zhuang, Weimin Wang, and Cong Wang, "Ultra-miniaturized wideband input-absorptive bandstop filter based on TFIPD technology," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 68, No. 7, 2414-2418, 2021.
doi:10.1109/tcsii.2021.3051184        Google Scholar

11. Zhao, Kunchen and Dimitra Psychogiou, "X-band MMIC-based tunable quasi-absorptive bandstop filter," IEEE Microwave and Wireless Technology Letters, Vol. 33, No. 4, 391-394, 2023.
doi:10.1109/lmwt.2022.3228572        Google Scholar

12. Kong, Mengdan, Yongle Wu, Zheng Zhuang, Yuanan Liu, and Ahmed A. Kishk, "Compact wideband reflective/absorptive bandstop filter with multitransmission zeros," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 2, 482-493, 2019.
doi:10.1109/tmtt.2018.2886847        Google Scholar

13. Hickle, Mark D. and Dimitrios Peroulis, "Theory and design of frequency-tunable absorptive bandstop filters," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 65, No. 6, 1862-1874, 2017.
doi:10.1109/tcsi.2017.2766206        Google Scholar

14. Lee, Tae-Hak, Jean-Jacques Laurin, and Ke Wu, "Reconfigurable filter for bandpass-to-absorptive bandstop responses," IEEE Access, Vol. 8, 6484-6495, 2020.
doi:10.1109/access.2019.2963710        Google Scholar

15. Zahari, M. K., B. H. Ahmad, Wong Peng Wen, and N. A. Shairi, "Switchable absorptive bandstop to bandpass filter using dual-mode ring resonator," 2016 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), 248-251, Langkawi, Malaysia, 2016.
doi:10.1109/APACE.2016.7916435

16. Şahin, Elif Güntürkün, "A reconfigurable and tunable single to dual wideband bandstop filter by using nested dual-mode square loop resonators," AEU --- International Journal of Electronics and Communications, Vol. 168, 154710, 2023.
doi:10.1016/j.aeue.2023.154710        Google Scholar

17. Gorur, Ali Kursad and Dimitra Psychogiou, "Single-/dual-band bandpass-to-bandstop filters with center frequency tunability," IEEE Access, Vol. 12, 90697-90706, 2024.
doi:10.1109/access.2024.3421614        Google Scholar

18. Bayati, Mohammad Sajjad, Seyed Mohammad Hadi Mousavi, and Seyed Vahab Al-Din Makki, "Combination of absorptive notch filter and tunable dual-band conventional notch filter," Microwave and Optical Technology Letters, Vol. 64, No. 1, 30-35, 2022.
doi:10.1002/mop.33031        Google Scholar

19. Chang, En-Wei and Yo-Shen Lin, "Miniature multi-band absorptive bandstop filter designs using bridged-T coils," IEEE Access, Vol. 6, 73637-73646, 2018.
doi:10.1109/access.2018.2882828        Google Scholar

20. Lin, Yo-Shen, Yi-Chi Huang, and Qing-Yi Jiang, "Miniature dual-band absorptive bandstop filters with improved passband performance," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 69, No. 6, 2339-2350, 2022.
doi:10.1109/tcsi.2022.3155491        Google Scholar

21. Zuo, Xiaoying, Lei Qin, Mengxin He, Hang Mei, and Yajian Li, "Planar dual-band coupled-line absorptive bandstop filter with an input lossy step-impedance stub," AEU --- International Journal of Electronics and Communications, Vol. 176, 155133, 2024.
doi:10.1016/j.aeue.2024.155133        Google Scholar

22. Mei, Hang and Xiaoying Zuo, "A dual-band input-apsorptive bandstop filter using coupled lines," 2023 International Applied Computational Electromagnetics Society Symposium (ACES-China), 1-3, Hangzhou, China, August 2023.
doi:10.23919/ACES-China60289.2023.10249925