Vol. 164
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-01-15
Design of a High Gain Low SAR Microstrip Antenna Array with AMC Structure for Wearable Applications
By
Progress In Electromagnetics Research C, Vol. 164, 253-262, 2026
Abstract
In this paper, a novel wearable antenna array backed by an AMC reflector is presented for high gain and low side-lobe levels. The presented antenna consists of a four-element array. The impedance bandwidth (≤ -10 dB) of the proposed antenna is from 5.6 to 6.8 GHz. After adding an AMC structure on the back side of the antenna array, the maximum measured gain reaches 13.8 dBi at 6.7 GHz; the front-to-back ratio (FBR) value is raised by 25.3 dB; and the sidelobe level is less than -20.51 dB. When the antenna array is on the human body model, the simulated SAR value is only 0.05 W/Kg/10 g, significantly lower than the international standard. These good measured results demonstrate that the proposed antenna is suitable for modern wearable applications.
Citation
Jialin Zhang, Chengzhu Du, and Xu Wu, "Design of a High Gain Low SAR Microstrip Antenna Array with AMC Structure for Wearable Applications," Progress In Electromagnetics Research C, Vol. 164, 253-262, 2026.
doi:10.2528/PIERC25101603
References

1. Vaezi, Mojtaba, Amin Azari, Saeed R. Khosravirad, Mahyar Shirvanimoghaddam, M. Mahdi Azari, Danai Chasaki, and Petar Popovski, "Cellular, wide-area, and non-terrestrial IoT: A survey on 5G advances and the road toward 6G," IEEE Communications Surveys & Tutorials, Vol. 24, No. 2, 1117-1174, 2022.
doi:10.1109/comst.2022.3151028        Google Scholar

2. Fraire, Juan A., Oana Iova, and Fabrice Valois, "Space-terrestrial integrated Internet of Things: Challenges and opportunities," IEEE Communications Magazine, Vol. 60, No. 12, 64-70, 2022.
doi:10.1109/mcom.008.2200215        Google Scholar

3. Azari, M. Mahdi, Sourabh Solanki, Symeon Chatzinotas, Oltjon Kodheli, Hazem Sallouha, Achiel Colpaert, Jesus Fabian Mendoza Montoya, Sofie Pollin, Alireza Haqiqatnejad, Arsham Mostaani, Eva Lagunas, and Bjorn Ottersten, "Evolution of non-terrestrial networks from 5G to 6G: A survey," IEEE Communications Surveys & Tutorials, Vol. 24, No. 4, 2633-2672, 2022.
doi:10.1109/comst.2022.3199901        Google Scholar

4. Taleb, Rahma Djaouda, Mohammed Zakarya Baba-Ahmed, and Mohammed Amin Rabah, "Reconfigurable graphene antenna for a network cognitive radio: A novel solution for X-band satellite communications," Advances in Space Research, Vol. 73, No. 9, 4742-4750, 2024.
doi:10.1016/j.asr.2024.02.007        Google Scholar

5. Algaba-Brazález, Astrid, Pilar Castillo-Tapia, Maria Carolina Viganó, and Oscar Quevedo-Teruel, "Lenses combined with array antennas for the next generation of terrestrial and satellite communication systems," IEEE Communications Magazine, Vol. 62, No. 9, 176-182, 2024.
doi:10.1109/mcom.024.2300370        Google Scholar

6. Rao, Neeraj and V. Dinesh Kumar, "Miniaturization of microstrip patch antenna for satellite communication: A novel fractal geometry approach," Wireless Personal Communications, Vol. 97, No. 3, 3673-3683, 2017.
doi:10.1007/s11277-017-4691-4        Google Scholar

7. Zhu, Xiangming and Chunxiao Jiang, "Creating efficient integrated satellite-terrestrial networks in the 6G era," IEEE Wireless Communications, Vol. 29, No. 4, 154-160, 2022.
doi:10.1109/mwc.011.2100643        Google Scholar

8. Wang, Jiawei, Chunxiao Jiang, Linling Kuang, and Rui Han, "Satellite multi-beam collaborative scheduling in satellite aviation communications," IEEE Transactions on Wireless Communications, Vol. 23, No. 3, 2097-2111, 2024.
doi:10.1109/twc.2023.3295382        Google Scholar

9. Yang, Songjie, Jiancheng An, Yue Xiu, Wanting Lyu, Boyu Ning, Zhongpei Zhang, Mérouane Debbah, and Chau Yuen, "Flexible antenna arrays for wireless communications: Modeling and performance evaluation," IEEE Transactions on Wireless Communications, Vol. 24, No. 6, 4937-4951, 2025.
doi:10.1109/twc.2025.3545305        Google Scholar

10. Nie, Hong-Kuai, Xiu-Wei Xuan, Qi Shi, Ai Guo, Ming-Ji Li, Hong-Ji Li, and Guang-Jun Ren, "Wearable antenna sensor based on EBG structure for cervical curvature monitoring," IEEE Sensors Journal, Vol. 22, No. 1, 315-323, 2022.
doi:10.1109/jsen.2021.3130252        Google Scholar

11. Kumkhet, Boonyarit, Paitoon Rakluea, Norakamon Wongsin, Pubet Sangmahamad, Wanwisa Thaiwirot, Chatree Mahatthanajatuphat, and Nonchanutt Chudpooti, "SAR reduction using dual band EBG method based on MIMO wearable antenna for WBAN applications," AEU --- International Journal of Electronics and Communications, Vol. 160, 154525, 2023.
doi:10.1016/j.aeue.2022.154525        Google Scholar

12. Wajid, Abdul, Ashfaq Ahmad, Sadiq Ullah, Dong-you Choi, and Faiz Ul Islam, "Performance analysis of wearable dual-band patch antenna based on EBG and SRR surfaces," Sensors, Vol. 22, No. 14, 5208, 2022.
doi:10.3390/s22145208        Google Scholar

13. Ashyap, Adel, Raad Raad, Faisel Tubbal, Wajid Ali Khan, and Suhila Abulgasem, "Highly bendable AMC-based antenna for wearable applications," IEEE Access, Vol. 12, 154195-154211, 2024.
doi:10.1109/access.2024.3483315        Google Scholar

14. Wang, Shuqi and Huan Gao, "A dual-band wearable conformal antenna based on artificial magnetic conductor," International Journal of Antennas and Propagation, Vol. 2022, No. 1, 9970477, 2022.
doi:10.1155/2022/9970477        Google Scholar

15. Nguyen, Ngoc-Lan, Cong Danh Bui, and Quang Sang Nguyen, "Design of a compact antenna with broadband and high gain," Electromagnetics, Vol. 44, No. 1, 18-31, 2024.
doi:10.1080/02726343.2023.2300840        Google Scholar

16. Saha, Pujayita, Debasis Mitra, and Susanta K. Parui, "Control of gain and SAR for wearable antenna using AMC structure," Radioengineering, Vol. 30, No. 1, 81-88, 2021.
doi:10.13164/re.2021.0081        Google Scholar

17. Youssef, Omar M., Mohamed El Atrash, and Mahmoud A. Abdalla, "A compact fully fabric I‐shaped antenna supported with textile‐based AMC for low SAR 2.45 GHz wearable applications," Microwave and Optical Technology Letters, Vol. 65, No. 7, 2021-2030, 2023.
doi:10.1002/mop.33647        Google Scholar

18. Yang, Shuhui, Chenyin Yu, Xiaotao Yang, and Jiaqi Zhao, "A tri-band flexible antenna based on tri-band AMC reflector for gain enhancement and SAR reduction," AEU --- International Journal of Electronics and Communications, Vol. 168, 154715, 2023.
doi:10.1016/j.aeue.2023.154715        Google Scholar

19. Chu, Jun, Chengzhu Du, and Haifeng Shu, "A high FBR low SAR and AMC-backed compact wearable antenna array for WBAN applications," International Journal of Microwave and Wireless Technologies, Vol. 16, No. 9, 1499-1509, 2024.
doi:10.1017/s1759078724001041        Google Scholar

20. Alwareth, Husam, Imran Mohd Ibrahim, Zahriladha Zakaria, Ahmed Jamal Abdullah Al-Gburi, Sharif Ahmed, and Zayed A. Nasser, "A wideband high-gain microstrip array antenna integrated with frequency-selective surface for Sub-6 GHz 5G applications," Micromachines, Vol. 13, No. 8, 1215, 2022.
doi:10.3390/mi13081215        Google Scholar

21. Zu, Haoran, Bian Wu, Peibin Yang, Wenhua Li, and Jinjin Liu, "Wideband and high-gain wearable antenna array with specific absorption rate suppression," Electronics, Vol. 10, No. 17, 2056, 2021.
doi:10.3390/electronics10172056        Google Scholar

22. Huang, Rui and Xiaodong Liu, "A wearable low-profile flexible dual-polarized antenna array loaded with AMC for 5 GHz WLAN on-/off-body applications," 2022 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 1-3, Guangzhou, China, 2022.
doi:10.1109/IMWS-AMP54652.2022.10106860