1. Kumar, Girish and Kamala Prasan Ray, Broadband Microstrip Antennas, Artech House, 2003.
2. Garg, Ramesh, Microstrip Antenna Design Handbook, Artech House, 2001.
3. Balanis, Constantine A., Antenna Theory: Analysis and Design, 2nd Ed., John Wiley & Sons, USA, 2007.
4. Kovitz, Joshua M. and Yahya Rahmat-Samii, "Using thick substrates and capacitive probe compensation to enhance the bandwidth of traditional CP patch antennas," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 10, 4970-4979, Oct. 2014.
doi:10.1109/tap.2014.2343239 Google Scholar
5. Kandwal, Abhishek and Sunil Kumar Khah, "A novel design of gap-coupled sectoral patch antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 674-677, 2013.
doi:10.1109/lawp.2013.2264103 Google Scholar
6. Balaji, Uma, "Bandwidth enhanced circular and annular ring sectoral patch antennas," Progress In Electromagnetics Research Letters, Vol. 84, 67-73, 2019.
doi:10.2528/pierl19030507 Google Scholar
7. Xu, Kai Da, Han Xu, Yanhui Liu, Jianxing Li, and Qing Huo Liu, "Microstrip patch antennas with multiple parasitic patches and shorting vias for bandwidth enhancement," IEEE Access, Vol. 6, 11624-11633, 2018.
doi:10.1109/access.2018.2794962 Google Scholar
8. Cao, Yufan, Yang Cai, Wenquan Cao, Baokun Xi, Zuping Qian, Tao Wu, and Lei Zhu, "Broadband and high-gain microstrip patch antenna loaded with parasitic mushroom-type structure," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 7, 1405-1409, Jul. 2019.
doi:10.1109/lawp.2019.2917909 Google Scholar
9. Raha, Krishnendu and K. P. Ray, "Broadband high gain and low cross-polarization double cavity-backed stacked microstrip antenna," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 7, 5902-5906, Jul. 2022.
doi:10.1109/tap.2022.3140349 Google Scholar
10. Chopra, Rinkee and Girish Kumar, "Broadband and high gain multilayer multiresonator elliptical microstrip antenna," IET Microwaves, Antennas & Propagation, Vol. 14, No. 8, 821-829, 2020.
doi:10.1049/iet-map.2019.0186 Google Scholar
11. Rathod, S. M., R. N. Awale, K. P. Ray, and Amar D. Chaudhari, "Broadband gap-coupled half-hexagonal microstrip antenna fed by microstrip-line resonator," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 28, No. 6, e21273, 2018.
doi:10.1002/mmce.21273 Google Scholar
12. Rathod, S. M., R. N. Awale, and K. P. Ray, "A 50ω microstrip line fed shorted hexagonal microstrip antennas with reduced cross-polarization," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 18, No. 2, 246-262, 2019.
doi:10.1590/2179-10742019v18i21436 Google Scholar
13. Yoo, Jeong-Ung and Hae-Won Son, "A simple compact wideband microstrip antenna consisting of three staggered patches," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 12, 2038-2042, 2020.
doi:10.1109/lawp.2020.3021491 Google Scholar
14. Muntoni, Giacomo, Giorgio Montisci, Giovanni Andrea Casula, Francesco Paolo Chietera, Andrea Michel, Riccardo Colella, Luca Catarinucci, and Giuseppe Mazzarella, "A curved 3-D printed microstrip patch antenna layout for bandwidth enhancement and size reduction," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 7, 1118-1122, Jul. 2020.
doi:10.1109/lawp.2020.2990944 Google Scholar
15. Huynh, T. and K.-F. Lee, "Single-layer single-patch wideband microstrip antenna," Electronics Letters, Vol. 31, No. 16, 1310-1312, Aug. 1995.
doi:10.1049/el:19950950 Google Scholar
16. Wong, Kin-Lu and Wen-Hsis Hsu, "A broad-band rectangular patch antenna with a pair of wide slits," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 9, 1345-1347, Sep. 2001.
doi:10.1109/8.951507 Google Scholar
17. Sharma, Satish K. and Lotfollah Shafai, "Performance of a novel ψ-shape microstrip patch antenna with wide bandwidth," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 468-471, 2009.
doi:10.1109/lawp.2009.2020184 Google Scholar
18. Fan, Tian-Qi, Botao Jiang, Ruizhi Liu, Jianping Xiu, Yue Lin, and Hongtao Xu, "A novel double U-slot microstrip patch antenna design for low-profile and broad bandwidth applications," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 4, 2543-2549, 2022.
doi:10.1109/tap.2021.3125382 Google Scholar
19. Radavaram, Sai and Maria Pour, "Wideband radiation reconfigurable microstrip patch antenna loaded with two inverted U-slots," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1501-1508, Mar. 2019.
doi:10.1109/tap.2018.2885433 Google Scholar
20. Baudha, Sudeep and Manish V. Yadav, "A novel design of a planar antenna with modified patch and defective ground plane for ultra-wideband applications," Microwave and Optical Technology Letters, Vol. 61, No. 5, 1320-1327, 2019.
doi:10.1002/mop.31716 Google Scholar
21. Mondal, K. and P. P. Sarkar, "Gain and bandwidth enhancement of microstrip patch antenna for WiMAX and WLAN applications," IETE Journal of Research, Vol. 67, No. 5, 726-734, 2021.
doi:10.1080/03772063.2019.1565958 Google Scholar
22. Kadam, Poonam A. and Amit A. Deshmukh, "Designs of regular shape microstrip antennas backed by bow-tie shape ground plane for enhanced antenna characteristics," AEU --- International Journal of Electronics and Communications, Vol. 137, 153823, 2021.
doi:10.1016/j.aeue.2021.153823 Google Scholar
23. Chavali, Venkata A. P. and Amit A. Deshmukh, "Wideband designs of regular shape microstrip antennas using modified ground plane," Progress In Electromagnetics Research C, Vol. 117, 203-219, 2021.
doi:10.2528/pierc21110202 Google Scholar
24. Deshmukh, Amit A., Venkata A. P. Chavali, and Aarti G. Ambekar, "Thinner substrate designs of modified ground plane E-shape microstrip antennas for wideband response," Electromagnetics, Vol. 42, No. 4, 255-265, 2022.
doi:10.1080/02726343.2022.2099341 Google Scholar
25. Deshmukh, Amit A. and K. P. Ray, "Analysis of broadband Psi (Ψ)-shaped microstrip antennas," IEEE Antennas and Propagation Magazine, Vol. 55, No. 2, 107-123, 2013.
doi:10.1109/map.2013.6529321 Google Scholar
26. CST Software, Version 2019.
27. Wi, Sang-Hyuk, Yong-Shik Lee, and Jong-Gwan Yook, "Wideband microstrip patch antenna with U-shaped parasitic elements," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 4, 1196-1199, 2007.
doi:10.1109/tap.2007.893427 Google Scholar
28. Lu, Hua-Xiao, Fang Liu, Ming Su, and Yuan-An Liu, "Design and analysis of wideband U-slot patch antenna with U-shaped parasitic elements," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 28, No. 2, e21202, 2018.
doi:10.1002/mmce.21202 Google Scholar
29. Chavali, Venkata A. P. and Amit A. Deshmukh, "Wideband designs of proximity fed isosceles triangular microstrip antennas gap-coupled with parasitic pairs of sectoral patches," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 32, No. 6, e23132, 2022.
doi:10.1002/mmce.23132 Google Scholar
30. Liu, Neng-Wu, Lei Zhu, Wai-Wa Choi, and Xiao Zhang, "Wideband shorted patch antenna under radiation of dual-resonant modes," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 6, 2789-2796, 2017.
doi:10.1109/tap.2017.2688802 Google Scholar
31. Chavali, Venkata A. P. and Amit A. Deshmukh, "Multi resonant gap-coupled designs of E-shape microstrip antenna for wideband response," Progress In Electromagnetics Research C, Vol. 149, 67-79, 2024.
doi:10.2528/pierc24092002 Google Scholar
32. Chavali, Venkata A. P. and Amit A. Deshmukh, "Wideband designs of E-shape microstrip antenna on thinner substrate," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 24, No. 2, e2024291826, 2025.
doi:10.1590/2179-10742025v24i2291826 Google Scholar