Vol. 163
Latest Volume
All Volumes
PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-12-15
Shorted Microstrip Line Fed Wideband Design of E-Shape Microstrip Antenna Loaded with Printed Rectangular Resonator
By
Progress In Electromagnetics Research C, Vol. 163, 81-90, 2026
Abstract
The shorted microstrip line fed design of an E-shape microstrip antenna loaded with a printed rectangular loop resonator is presented for wideband response on a thinner substrate. Wideband response is attributed to the optimum inter-spacing between the TM1/2,0 resonant mode of shorted microstrip line feed, with respect to TM10 and modified TM02 modes on rectangular patch and TM20 mode on the printed rectangular loop. The design on a substrate of thickness 0.046λg achieves bandwidth of 227 MHz (23.56%) with a peak broadside gain of 7.1 dBi. The selection of microstrip line feed achieves wideband response on thinner substrate and harmonic rejection to the higher band frequencies. A methodology to design similar antennas as per specific wireless application is presented that yields similar result. An experimental verification has been carried out in the proposed design, which shows close agreement with the simulation.
Citation
Venkata A. P. Chavali, and Amit A. Deshmukh, "Shorted Microstrip Line Fed Wideband Design of E-Shape Microstrip Antenna Loaded with Printed Rectangular Resonator," Progress In Electromagnetics Research C, Vol. 163, 81-90, 2026.
doi:10.2528/PIERC25101901
References

1. Kumar, Girish and Kamala Prasan Ray, Broadband Microstrip Antennas, Artech House, 2003.

2. Garg, Ramesh, Microstrip Antenna Design Handbook, Artech House, 2001.

3. Balanis, Constantine A., Antenna Theory: Analysis and Design, 2nd Ed., John Wiley & Sons, USA, 2007.

4. Kovitz, Joshua M. and Yahya Rahmat-Samii, "Using thick substrates and capacitive probe compensation to enhance the bandwidth of traditional CP patch antennas," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 10, 4970-4979, Oct. 2014.
doi:10.1109/tap.2014.2343239

5. Kandwal, Abhishek and Sunil Kumar Khah, "A novel design of gap-coupled sectoral patch antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 674-677, 2013.
doi:10.1109/lawp.2013.2264103

6. Balaji, Uma, "Bandwidth enhanced circular and annular ring sectoral patch antennas," Progress In Electromagnetics Research Letters, Vol. 84, 67-73, 2019.
doi:10.2528/pierl19030507

7. Xu, Kai Da, Han Xu, Yanhui Liu, Jianxing Li, and Qing Huo Liu, "Microstrip patch antennas with multiple parasitic patches and shorting vias for bandwidth enhancement," IEEE Access, Vol. 6, 11624-11633, 2018.
doi:10.1109/access.2018.2794962

8. Cao, Yufan, Yang Cai, Wenquan Cao, Baokun Xi, Zuping Qian, Tao Wu, and Lei Zhu, "Broadband and high-gain microstrip patch antenna loaded with parasitic mushroom-type structure," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 7, 1405-1409, Jul. 2019.
doi:10.1109/lawp.2019.2917909

9. Raha, Krishnendu and K. P. Ray, "Broadband high gain and low cross-polarization double cavity-backed stacked microstrip antenna," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 7, 5902-5906, Jul. 2022.
doi:10.1109/tap.2022.3140349

10. Chopra, Rinkee and Girish Kumar, "Broadband and high gain multilayer multiresonator elliptical microstrip antenna," IET Microwaves, Antennas & Propagation, Vol. 14, No. 8, 821-829, 2020.
doi:10.1049/iet-map.2019.0186

11. Rathod, S. M., R. N. Awale, K. P. Ray, and Amar D. Chaudhari, "Broadband gap-coupled half-hexagonal microstrip antenna fed by microstrip-line resonator," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 28, No. 6, e21273, 2018.
doi:10.1002/mmce.21273

12. Rathod, S. M., R. N. Awale, and K. P. Ray, "A 50ω microstrip line fed shorted hexagonal microstrip antennas with reduced cross-polarization," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 18, No. 2, 246-262, 2019.
doi:10.1590/2179-10742019v18i21436

13. Yoo, Jeong-Ung and Hae-Won Son, "A simple compact wideband microstrip antenna consisting of three staggered patches," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 12, 2038-2042, 2020.
doi:10.1109/lawp.2020.3021491

14. Muntoni, Giacomo, Giorgio Montisci, Giovanni Andrea Casula, Francesco Paolo Chietera, Andrea Michel, Riccardo Colella, Luca Catarinucci, and Giuseppe Mazzarella, "A curved 3-D printed microstrip patch antenna layout for bandwidth enhancement and size reduction," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 7, 1118-1122, Jul. 2020.
doi:10.1109/lawp.2020.2990944

15. Huynh, T. and K.-F. Lee, "Single-layer single-patch wideband microstrip antenna," Electronics Letters, Vol. 31, No. 16, 1310-1312, Aug. 1995.
doi:10.1049/el:19950950

16. Wong, Kin-Lu and Wen-Hsis Hsu, "A broad-band rectangular patch antenna with a pair of wide slits," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 9, 1345-1347, Sep. 2001.
doi:10.1109/8.951507

17. Sharma, Satish K. and Lotfollah Shafai, "Performance of a novel ψ-shape microstrip patch antenna with wide bandwidth," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 468-471, 2009.
doi:10.1109/lawp.2009.2020184

18. Fan, Tian-Qi, Botao Jiang, Ruizhi Liu, Jianping Xiu, Yue Lin, and Hongtao Xu, "A novel double U-slot microstrip patch antenna design for low-profile and broad bandwidth applications," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 4, 2543-2549, 2022.
doi:10.1109/tap.2021.3125382

19. Radavaram, Sai and Maria Pour, "Wideband radiation reconfigurable microstrip patch antenna loaded with two inverted U-slots," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1501-1508, Mar. 2019.
doi:10.1109/tap.2018.2885433

20. Baudha, Sudeep and Manish V. Yadav, "A novel design of a planar antenna with modified patch and defective ground plane for ultra-wideband applications," Microwave and Optical Technology Letters, Vol. 61, No. 5, 1320-1327, 2019.
doi:10.1002/mop.31716

21. Mondal, K. and P. P. Sarkar, "Gain and bandwidth enhancement of microstrip patch antenna for WiMAX and WLAN applications," IETE Journal of Research, Vol. 67, No. 5, 726-734, 2021.
doi:10.1080/03772063.2019.1565958

22. Kadam, Poonam A. and Amit A. Deshmukh, "Designs of regular shape microstrip antennas backed by bow-tie shape ground plane for enhanced antenna characteristics," AEU --- International Journal of Electronics and Communications, Vol. 137, 153823, 2021.
doi:10.1016/j.aeue.2021.153823

23. Chavali, Venkata A. P. and Amit A. Deshmukh, "Wideband designs of regular shape microstrip antennas using modified ground plane," Progress In Electromagnetics Research C, Vol. 117, 203-219, 2021.
doi:10.2528/pierc21110202

24. Deshmukh, Amit A., Venkata A. P. Chavali, and Aarti G. Ambekar, "Thinner substrate designs of modified ground plane E-shape microstrip antennas for wideband response," Electromagnetics, Vol. 42, No. 4, 255-265, 2022.
doi:10.1080/02726343.2022.2099341

25. Deshmukh, Amit A. and K. P. Ray, "Analysis of broadband Psi (Ψ)-shaped microstrip antennas," IEEE Antennas and Propagation Magazine, Vol. 55, No. 2, 107-123, 2013.
doi:10.1109/map.2013.6529321

26. CST Software, Version 2019.

27. Wi, Sang-Hyuk, Yong-Shik Lee, and Jong-Gwan Yook, "Wideband microstrip patch antenna with U-shaped parasitic elements," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 4, 1196-1199, 2007.
doi:10.1109/tap.2007.893427

28. Lu, Hua-Xiao, Fang Liu, Ming Su, and Yuan-An Liu, "Design and analysis of wideband U-slot patch antenna with U-shaped parasitic elements," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 28, No. 2, e21202, 2018.
doi:10.1002/mmce.21202

29. Chavali, Venkata A. P. and Amit A. Deshmukh, "Wideband designs of proximity fed isosceles triangular microstrip antennas gap-coupled with parasitic pairs of sectoral patches," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 32, No. 6, e23132, 2022.
doi:10.1002/mmce.23132

30. Liu, Neng-Wu, Lei Zhu, Wai-Wa Choi, and Xiao Zhang, "Wideband shorted patch antenna under radiation of dual-resonant modes," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 6, 2789-2796, 2017.
doi:10.1109/tap.2017.2688802

31. Chavali, Venkata A. P. and Amit A. Deshmukh, "Multi resonant gap-coupled designs of E-shape microstrip antenna for wideband response," Progress In Electromagnetics Research C, Vol. 149, 67-79, 2024.
doi:10.2528/pierc24092002

32. Chavali, Venkata A. P. and Amit A. Deshmukh, "Wideband designs of E-shape microstrip antenna on thinner substrate," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 24, No. 2, e2024291826, 2025.
doi:10.1590/2179-10742025v24i2291826