Vol. 163
Latest Volume
All Volumes
PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-12-21
High-Sensitive Mid-Infrared Photonic Crystal Sensor Based on Slotted-Waveguide Coupled-Cavity for Acetylene Detection
By
Progress In Electromagnetics Research C, Vol. 163, 231-238, 2026
Abstract
The environment is crucial to maintaining a healthy lifestyle and ensuring the continued existence of life on Earth. Nonetheless, throughout the past several years, environmental pollution has increased significantly due to the rapid growth of the global population and technological advancement. Consequently, numerous new sensors and techniques have been developed to effectively detect different types of environmental pollutants. Among all the various methods proposed for environmental monitoring, photonic crystal (PhC) devices have demonstrated great potential in sensing applications due to their high sensitivity to refractive index change, visual detectability, room-temperature operability, and easy portability. Recently, integrated mid-infrared (mid-IR) photonics have gained considerable attention because most gases exhibit a characteristic absorption peak in the mid-IR range. As a result, Mid-IR photonic crystals offer enormous potential for novel applications in optical interconnects and sensing. In this work, we propose a novel highly-sensitive mid-infrared photonic crystal-based slotted-waveguide coupled-cavity sensor to behave as a refractive index sensing device at a mid-infrared wavelength of 3.9 µm. The proposed sensor is simulated using Plane Wave Expansion (PWE) method and Finite-Difference Time-Domain (FDTD) algorithm. The high performance and simple design of the proposed sensor make it a promising candidate for environmental monitoring applications.
Citation
Mouad Mezhoud, Hadjira Tayoub, Ahlam Harhouz, Farida Kebaili, and Abdesselam Hocini, "High-Sensitive Mid-Infrared Photonic Crystal Sensor Based on Slotted-Waveguide Coupled-Cavity for Acetylene Detection," Progress In Electromagnetics Research C, Vol. 163, 231-238, 2026.
doi:10.2528/PIERC25102403
References

1. Naik, Ramachandra, A. Naveen Kumar, H. P. Nagaswarupa, and S. Giridhar Reddy, Optical nanotechnology-based sensors for environmental contaminants’ detection, 137-153 Elsevier, 2024.
doi:10.1016/b978-0-443-14118-8.00008-5

2. Abdel-Karim, Randa, "Advanced approaches in micro-and nano-sensors for harsh environmental applications: A review," Modern Nanotechnology: Volume 1: Environmental Sustainability and Remediation, 585-612, 2023.
doi:10.1007/978-3-031-31111-6_23

3. Wang, Fengyan, Zihui Meng, Fei Xue, Min Xue, Wei Lu, Wei Chen, Qiuhong Wang, and Yifei Wang, "Responsive photonic crystal for the sensing of environmental pollutants," Trends in Environmental Analytical Chemistry, Vol. 3-4, No. 2014, 1-6, 2014.
doi:10.1016/j.teac.2014.09.002

4. Scullion, Mark G., Thomas F. Krauss, and Andrea Di Falco, "Slotted photonic crystal sensors," Sensors, Vol. 13, No. 3, 3675-3710, 2013.
doi:10.3390/s130303675

5. Mou, Farhana Akter, Md. Moshiur Rahman, Mohammad Rakibul Islam, and Mohammed Imamul Hassan Bhuiyan, "Development of a photonic crystal fiber for THz wave guidance and environmental pollutants detection," Sensing and Bio-Sensing Research, Vol. 29, 100346, 2020.
doi:10.1016/j.sbsr.2020.100346

6. De, Moutusi, Tarun Kumar Gangopadhyay, and Vinod Kumar Singh, "Prospects of photonic crystal fiber as physical sensor: An overview," Sensors, Vol. 19, No. 3, 464, 2019.
doi:10.3390/s19030464

7. Tayoub, Hadjira, Abdesselam Hocini, and Ahlam Harhouz, "High-sensitive mid-infrared photonic crystal sensor using slotted-waveguide coupled-cavity," Progress In Electromagnetics Research M, Vol. 105, 45-54, 2021.
doi:10.2528/PIERM21071207

8. Bouzidi, A., D. Bria, A. Akjouj, Y. Pennec, and B. Djafari-Rouhani, "A tiny gas-sensor system based on 1D photonic crystal," Journal of Physics D: Applied Physics, Vol. 48, No. 49, 495102, 2015.
doi:10.1088/0022-3727/48/49/495102

9. Harhouz, Ahlam and Abdesselam Hocini, "Design of high sensitive optical sensor for seawater salinity," 2nd International Congress on Energy Efficiency and Energy Related Materials (ENEFM2014), 219-225, 2015.
doi:10.1007/978-3-319-16901-9_27

10. Shi, Qing, Jianlong Zhao, and Lijuan Liang, "Two dimensional photonic crystal slab biosensors using label free refractometric sensing schemes: A review," Progress in Quantum Electronics, Vol. 77, 100298, 2021.
doi:10.1016/j.pquantelec.2020.100298

11. Arunbabu, Dhamodaran, Arindam Sannigrahi, and Tushar Jana, "Photonic crystal hydrogel material for the sensing of toxic mercury ions (Hg 2+) in water," Soft Matter, Vol. 7, No. 6, 2592-2599, 2011.
doi:10.1039/c0sm01136c

12. Kou, Donghui, Yongce Zhang, Shufen Zhang, Suli Wu, and Wei Ma, "High-sensitive and stable photonic crystal sensors for visual detection and discrimination of volatile aromatic hydrocarbon vapors," Chemical Engineering Journal, Vol. 375, 121987, 2019.
doi:10.1016/j.cej.2019.121987

13. Ahmed, Farid, Vahid Ahsani, Kaveh Nazeri, Ehsan Marzband, Colin Bradley, Ehsan Toyserkani, and Martin B. G. Jun, "Monitoring of carbon dioxide using hollow-core photonic crystal fiber mach-zehnder interferometer," Sensors, Vol. 19, No. 15, 3357, 2019.
doi:10.3390/s19153357

14. Hocini, Abdesselam and Ahlam Harhouz, "Modeling and analysis of the temperature sensitivity in two-dimensional photonic crystal microcavity," Journal of Nanophotonics, Vol. 10, No. 1, 016007, 2016.
doi:10.1117/1.jnp.10.016007

15. Tayoub, Hadjira, Ahlam Harhouz, and Abdesselam Hocini, "2D photonic crystal biosensing platform based on coupled defective ring-shaped microcavity-two waveguides for diabetes detection using human tears," Physica Scripta, Vol. 98, No. 11, 115510, 2023.
doi:10.1088/1402-4896/acff29

16. Benisty, H., C. Weisbuch, D. Labilloy, M. Rattier, C. J. M. Smith, T. F. Krauss, R. M. De La Rue, R. Houdre, U. Oesterle, C. Jouanin, and D. Cassagne, "Optical and confinement properties of two-dimensional photonic crystals," Journal of Lightwave Technology, Vol. 17, No. 11, 2063-2077, 1999.
doi:10.1109/50.802996

17. Parandin, Fariborz, Reza Kamarian, and Mohamadreza Jomour, "Optical 1-bit comparator based on two-dimensional photonic crystals," Applied Optics, Vol. 60, No. 8, 2275-2280, 2021.
doi:10.1364/ao.419737

18. Zouache, T., A. Hocini, A. Harhouz, and R. Mokhtari, "Design of pressure sensor based on two-dimensional photonic crystal," Acta Physica Polonica A, Vol. 131, No. 1, 68-70, 2017.
doi:10.12693/aphyspola.131.68

19. Parandin, Fariborz, Farsad Heidari, Zahra Rahimi, and Saeed Olyaee, "Two-Dimensional photonic crystal Biosensors: A review," Optics & Laser Technology, Vol. 144, 107397, 2021.
doi:10.1016/j.optlastec.2021.107397

20. Harhouz, Ahlam and Abdesselam Hocini, "Design of high-sensitive biosensor based on cavity-waveguides coupling in 2D photonic crystal," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 5, 659-667, 2015.
doi:10.1080/09205071.2015.1012597

21. Hocini, Abdesselam, Riad Moukhtari, Djamel Khedrouche, Ahmed Kahlouche, and Mehdi Zamani, "Magneto-photonic crystal microcavities based on magnetic nanoparticles embedded in silica matrix," Optics Communications, Vol. 384, 111-117, 2017.
doi:10.1016/j.optcom.2016.10.020

22. Yee, Kane, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/tap.1966.1138693

23. Taflove, A. and M. E. Brodwin, "Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations," IEEE Transactions on Microwave Theory and Techniques, Vol. 23, No. 8, 623-630, 1975.
doi:10.1109/tmtt.1975.1128640

24. Kunz, Karl S. and Raymond J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics, CRC Press, 1993.
doi:10.1201/9780203736708

25. Chhoker, Pooja and Sarita Bajaj, "Analysis of photonic band structure in 1-D photonic crystal using PWE and FDTD Method," IJISET --- International Journal of Innovative Science, Engineering & Technology, Vol. 2, No. 8, 883-887, 2015.

26. Hajshahvaladi, Leila, Hassan Kaatuzian, and Mohammad Danaie, "Design of a hybrid photonic-plasmonic crystal refractive index sensor for highly sensitive and high-resolution sensing applications," Physics Letters A, Vol. 420, 127754, 2021.
doi:10.1016/j.physleta.2021.127754

27. Troia, Benedetto, Antonia Paolicelli, Francesco De Leonardis, and Vittorio M. N. Passaro, Photonic Crystals for Optical Sensing: A Review, Advances in Photonic Crystals, 2013.
doi:10.5772/53897

28. Tayoub, Hadjira, Abdesselam Hocini, and Ahlam Harhouz, "Mid-infrared refractive index sensor based on a 2D photonic crystal coupled cavity-two waveguides ," Instrumentation, Mesures, Métrologies, Vol. 18, No. 2, 165-169, 2019.
doi:10.18280/i2m.180211