Vol. 163
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-12-18
A Novel Wideband Coaxial-to-Rectangular Waveguide Transition Integrated with a Septum Horn Antenna for C-Band Satellite
By
Progress In Electromagnetics Research C, Vol. 163, 149-160, 2026
Abstract
In this paper, a novel wideband coaxial-to-rectangular waveguide transition integrated with a septum horn antenna is proposed for C-band satellite communication applications. The design employs a modified supershape excitation probe, derived from an extended superformula, to achieve smooth impedance transformation and broadband performance. Initially, the probe geometry is optimized through parametric simulations to validate its effectiveness within a rectangular waveguide structure. The transition is then effectively incorporated into a stepped septum horn antenna that facilitates dual circular polarization through a compact dual-feed mechanism. The septum structure ensures efficient conversion of linearly polarized modes into left-hand and right-hand circularly polarized waves, while maintaining high isolation and low axial ratio. An equivalent circuit model is developed to provide analytical insight into the impedance behavior. A prototype antenna is fabricated, and its performance is validated through measurements. The measured results confirm reflection coefficients below -10 dB across 4.6-8.6 GHz, peak gain of 15.8 dBi, and inter-port isolation exceeding 20 dB. Furthermore, the antenna achieves a 3 dB axial ratio bandwidth of 76.9%. A comparison with state-of-the-art designs demonstrates the superior performance and design efficiency of the proposed antenna architecture.
Citation
Ajitesh, and Manoj Kumar Meshram, "A Novel Wideband Coaxial-to-Rectangular Waveguide Transition Integrated with a Septum Horn Antenna for C-Band Satellite," Progress In Electromagnetics Research C, Vol. 163, 149-160, 2026.
doi:10.2528/PIERC25102804
References

1. Elbert, Bruce R., Introduction to Satellite Communication, Artech House, 2008.

2. Nouri, Leila, Lewis Nkenyereye, Mohammed Abdel Hafez, Fawwaz Hazzazi, Muhammad Akmal Chaudhary, and Maher Assaad, "A simplified and efficient approach for designing microstrip bandpass filters: Applications in satellite and 5G communications," AEU --- International Journal of Electronics and Communications, Vol. 177, 155189, 2024.
doi:10.1016/j.aeue.2024.155189        Google Scholar

3. Montero, José M., Ana M. Ocampo, and Nelson J. G. Fonseca, "C-band multiple beam antennas for communication satellites," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1263-1275, April 2015.
doi:10.1109/tap.2015.2395444        Google Scholar

4. Lagunas, Eva, Christos G. Tsinos, Shree Krishna Sharma, and Symeon Chatzinotas, "5G cellular and fixed satellite service spectrum coexistence in C-band," IEEE Access, Vol. 8, 72078-72094, 2020.
doi:10.1109/access.2020.2985012        Google Scholar

5. Irsigler, Markus, Günter W. Hein, and Andreas Schmitz-Peiffer, "Use of C-band frequencies for satellite navigation: Benefits and drawbacks," GPS Solutions, Vol. 8, No. 3, 119-139, July 2004.
doi:10.1007/s10291-004-0098-2        Google Scholar

6. Lozano-Guerrero, Antonio JosÉ, Francisco Javier Clemente-Fernandez, Juan Monzo-Cabrera, Juan Luis Pedreno-Molina, and Alejandro Diaz-Morcillo, "Precise evaluation of coaxial to waveguide transitions by means of inverse techniques," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 1, 229-235, January 2010.
doi:10.1109/tmtt.2009.2036408        Google Scholar

7. Lozano-Guerrero, Antonio José, Juan Monzó-Cabrera, Jaime Pitarch, Francisco Javier Clemente-Fernández, José Fayos-Fernández, Juan Luis Pedreño-Molina, Antonio Martínez-González, and Alejandro Díaz-Morcillo, "Multimodal retrieval of the scattering parameters of a coaxial-to-waveguide transition," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 12, 5241-5249, December 2021.
doi:10.1109/tmtt.2021.3121416        Google Scholar

8. Gan, Theng Huat and Eng Leong Tan, "Design of broadband circular polarization truncated horn antenna with single feed," Progress In Electromagnetics Research C, Vol. 24, 197-206, 2011.
doi:10.2528/pierc11082505        Google Scholar

9. Shu, Chao, Junbo Wang, Shaoqing Hu, Yuan Yao, Junsheng Yu, Yasir Alfadhl, and Xiaodong Chen, "A wideband dual-circular-polarization horn antenna for mmWave wireless communications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 9, 1726-1730, 2019.
doi:10.1109/lawp.2019.2927933        Google Scholar

10. Zhao, Yun, Zhongxiang Shen, and Wen Wu, "Wideband and low-profile H-plane ridged SIW horn antenna mounted on a large conducting plane," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 11, 5895-5900, 2014.
doi:10.1109/tap.2014.2354420        Google Scholar

11. Han, Kangkang, Gao Wei, Siyuan Lei, Changlong Qiu, and Tiancheng Qiu, "A design of broadband dual circularly polarized antenna," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 31, No. 7, e22679, April 2021.
doi:10.1002/mmce.22679        Google Scholar

12. Ye, Jinyu, Haozhe Zhang, and Ran Chu, "Analysis of a new method to design a coaxial-to-rectangular waveguide transition," 2019 International Applied Computational Electromagnetics Society Symposium --- China (ACES), 1-2, Nanjing, China, August 08-11, 2019.
doi:10.23919/ACES48530.2019.9060514

13. Chen, Zhenting and Zhongxiang Shen, "Design of a compact phased array using 16 surface-wave antenna elements," 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), 1183-1184, Singapore, Singapore, December 04-10, 2021.
doi:10.1109/APS/URSI47566.2021.9704738

14. Tako, N., E. Levine, G. Kabilo, and H. Matzner, "Investigation of thick coax-to-waveguide transitions," The 8th European Conference on Antennas and Propagation (EuCAP 2014), 908-911, The Hague, Netherlands, April 06-11, 2014.
doi:10.1109/EuCAP.2014.6901909

15. Sadhukhan, Gautam and Satyajit Chakrabarti, "Dual feed dual circularly polarized horn antenna at Ka band," 2019 International Conference on Range Technology (ICORT), 1-4, Balasore, India, 2019.
doi:10.1109/ICORT46471.2019.9069606

16. Škiljo, Maja, Zoran Blažević, and Dragan Poljak, "Septum feed design for right and left circular polarisation," 2022 International Conference on Software, Telecommunications and Computer Networks (SoftCOM), 1-6, Split, Croatia, September 22-24, 2022.
doi:10.23919/SoftCOM55329.2022.9911291

17. Addamo, Giuseppe, Oscar A. Peverini, Diego Manfredi, Flaviana Calignano, Fabio Paonessa, Giuseppe Virone, Riccardo Tascone, and Gianluca Dassano, "Additive manufacturing of Ka-band dual-polarization waveguide components," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 8, 3589-3596, 2018.
doi:10.1109/tmtt.2018.2854187        Google Scholar

18. Fonseca, Nelson J. G. and Jean-Christophe Angevain, "C-band septum polarizers with polynomial profile and accurate axial ratio characterization in back-to-back configuration," IEEE Journal of Microwaves, Vol. 2, No. 4, 678-689, 2022.
doi:10.1109/jmw.2022.3191440        Google Scholar

19. Song, Kaijun and Quan Xue, "Planar probe coaxial-waveguide power combiner/divider," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 11, 2761-2767, 2009.
doi:10.1109/tmtt.2009.2032483        Google Scholar

20. Piltyay, Stepan, "Electromagnetic and bandwidth performance optimization of new waveguide polarizers with septum of a stepped-thickness type for satellite systems," Journal of Electromagnetic Waves and Applications, Vol. 36, No. 9, 1257-1272, 2022.
doi:10.1080/09205071.2021.2016500        Google Scholar

21. Huang, Y. Q. and C. A. Liu, "Waveguide-coaxial converter based on single-ridge waveguide impedance transformation in Ka band," 2020 3rd International Conference on Electron Device and Mechanical Engineering (ICEDME), 78-81, Suzhou, China, May 01-03, 2020.
doi:10.1109/ICEDME50972.2020.00024

22. Komarov, Vyacheslav V., Alexey I. Korchagin, and Valeriy P. Meschanov, "Broad-band coaxial-to-waveguide transition," 2020 International Conference on Actual Problems of Electron Devices Engineering (APEDE), 163-165, Saratov, Russia, September 24-25, 2020.
doi:10.1109/APEDE48864.2020.9255415

23. Jazani, Ghoncheh and Abbas Pirhadi, "Design of dual‐polarised (RHCP/LHCP) quad‐ridged horn antenna with wideband septum polariser waveguide feed," IET Microwaves, Antennas & Propagation, Vol. 12, No. 9, 1541-1545, 2018.
doi:10.1049/iet-map.2017.0611        Google Scholar

24. Xu, Zheng, Jiangbo Duan, Chengxiang Hao, Kuiwen Xu, Shichang Chen, Peng Zhao, and Yingfei Sun, "Compact wideband circularly polarized horn antenna with tapered slot‐coupled feeding for Ku‐band applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 10, e21898, July 2019.
doi:10.1002/mmce.21898        Google Scholar

25. Lu, Kai, Kwok Wa Leung, and Nan Yang, "3-D-printed circularly polarized twisted-ridge horn antenna," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 3, 1746-1750, March 2021.
doi:10.1109/tap.2020.3031764        Google Scholar

26. Shi, Jun, Xiaoxing Yin, and Weiye Zhong, "Design of a K-band feed network with dual circular polarization," 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), 1-3, Xi'an, China, October 16-19, 2017.
doi:10.1109/APCAP.2017.8420453

27. Li, Dan-Yang, Yong-Chang Jiao, Hong-Wei Yu, and Zi-Bin Weng, "Wideband circularly polarized pyramidal horn antenna based on spoof surface plasmon polaritons," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 4, 2353-2358, April 2021.
doi:10.1109/tap.2020.3019588        Google Scholar

28. Yusuf, Derry Permana, Josaphat Tetuko Sri Sumantyo, Yuki Yoshimoto, Steven Gao, and Koichi Ito, "Dual-band circularly polarised asymmetric Linear‐Tapered horn antenna for feeder of synthetic aperture radar onboard microsatellite," IET Microwaves, Antennas & Propagation, Vol. 19, No. 1, e70006, January 2025.
doi:10.1049/mia2.70006        Google Scholar

29. Leung, Kwok Wa, Chu-Tian Huang, Zheng Fang, Kai Lu, and Nan Yang, "Wideband circularly polarized horn antenna with twisted ridges of gielis super-formula contour," IEEE Transactions on Antennas and Propagation, Vol. 73, No. 2, 1197-1202, February 2025.
doi:10.1109/tap.2024.3489891        Google Scholar

30. Hossain, Md. Sazzad, Jane M. Lehr, Andrew Fierro, and Edl Schamiloglu, "A wideband coaxial-to-waveguide transition devised with topology optimization," Scientific Reports, Vol. 15, No. 1, 1974, January 2025.
doi:10.1038/s41598-025-85396-2        Google Scholar

31. Yousefian, Mohsen, Seyed Jalil Hosseini, and Masoud Dahmardeh, "Compact broadband coaxial to rectangular waveguide transition," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 9, 1239-1247, April 2019.
doi:10.1080/09205071.2019.1606737        Google Scholar

32. Cheng, Xiaohe, Yuan Yao, Tao Yu, Junsheng Yu, and Xiaodong Chen, "Wideband dual circularly polarized antipodal septum antenna for millimeter-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 6, 3549-3554, June 2021.
doi:10.1109/tap.2020.3037768        Google Scholar

33. Shen, Zhongxiang and Chao Feng, "A new dual-polarized broadband horn antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 270-273, 2005.
doi:10.1109/lawp.2005.852998        Google Scholar

34. Enayati, Pardis and Davoud Zarifi, "Design of a wideband coaxial-to-rectangular waveguide transition based on Supershapes," IEEE Access, Vol. 10, 121924-121929, 2022.
doi:10.1109/access.2022.3222796        Google Scholar

35. Gielis, Johan, "A generic geometric transformation that unifies a wide range of natural and abstract shapes," American Journal of Botany, Vol. 90, No. 3, 333-338, 2003.
doi:10.3732/ajb.90.3.333        Google Scholar

36. Gielis, Johan and Diego Caratelli, "Computer implemented tool box systems and methods," Google Patents, US 8,818,771 B2, 2014.

37. Chen, Ming and G. Tsandoulas, "A wide-band square-waveguide array polarizer," IEEE Transactions on Antennas and Propagation, Vol. 21, No. 3, 389-391, May 1973.
doi:10.1109/tap.1973.1140486        Google Scholar

38. Kim, Ilkyu and Yahya Rahmat-Samii, "Revisiting stepped septum circular polarizer using full-wave simulations," 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), 919-921, Spokane, WA, USA, 2011.
doi:10.1109/APS.2011.5996426

39. Balanis, Constantine A., Antenna Theory: Analysis and Design, 3rd Ed., John Wiley & Sons, 2005.

40. Milligan, T. A., Modern Antenna Design, 2nd Ed., John Wiley & Sons, 2005.
doi:10.1002/0471720615

41. Von Hippel, A., Dielectrics and Waves, MIT Press, Cambridge, MA, USA, 1954.

42. Collin, Robert E., Foundations for Microwave Engineering, Wiley-IEEE Press, Hoboken, NJ, USA, 2001.
doi:10.1109/9780470544662

43. Ramo, Simon, John R. Whinnery, and Theodore Van Duzer, Fields and Waves in Communication Electronics, John Wiley & Sons, New York, NY, USA, 1994.

44. Harrington, R. F., Time-Harmonic Electromagnetic Fields, Wiley-IEEE Press, New York, NY, USA, 2001.