1. Elbert, Bruce R., Introduction to Satellite Communication, Artech House, 2008.
2. Nouri, Leila, Lewis Nkenyereye, Mohammed Abdel Hafez, Fawwaz Hazzazi, Muhammad Akmal Chaudhary, and Maher Assaad, "A simplified and efficient approach for designing microstrip bandpass filters: Applications in satellite and 5G communications," AEU --- International Journal of Electronics and Communications, Vol. 177, 155189, 2024.
doi:10.1016/j.aeue.2024.155189 Google Scholar
3. Montero, José M., Ana M. Ocampo, and Nelson J. G. Fonseca, "C-band multiple beam antennas for communication satellites," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1263-1275, April 2015.
doi:10.1109/tap.2015.2395444 Google Scholar
4. Lagunas, Eva, Christos G. Tsinos, Shree Krishna Sharma, and Symeon Chatzinotas, "5G cellular and fixed satellite service spectrum coexistence in C-band," IEEE Access, Vol. 8, 72078-72094, 2020.
doi:10.1109/access.2020.2985012 Google Scholar
5. Irsigler, Markus, Günter W. Hein, and Andreas Schmitz-Peiffer, "Use of C-band frequencies for satellite navigation: Benefits and drawbacks," GPS Solutions, Vol. 8, No. 3, 119-139, July 2004.
doi:10.1007/s10291-004-0098-2 Google Scholar
6. Lozano-Guerrero, Antonio JosÉ, Francisco Javier Clemente-Fernandez, Juan Monzo-Cabrera, Juan Luis Pedreno-Molina, and Alejandro Diaz-Morcillo, "Precise evaluation of coaxial to waveguide transitions by means of inverse techniques," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 1, 229-235, January 2010.
doi:10.1109/tmtt.2009.2036408 Google Scholar
7. Lozano-Guerrero, Antonio José, Juan Monzó-Cabrera, Jaime Pitarch, Francisco Javier Clemente-Fernández, José Fayos-Fernández, Juan Luis Pedreño-Molina, Antonio Martínez-González, and Alejandro Díaz-Morcillo, "Multimodal retrieval of the scattering parameters of a coaxial-to-waveguide transition," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 12, 5241-5249, December 2021.
doi:10.1109/tmtt.2021.3121416 Google Scholar
8. Gan, Theng Huat and Eng Leong Tan, "Design of broadband circular polarization truncated horn antenna with single feed," Progress In Electromagnetics Research C, Vol. 24, 197-206, 2011.
doi:10.2528/pierc11082505 Google Scholar
9. Shu, Chao, Junbo Wang, Shaoqing Hu, Yuan Yao, Junsheng Yu, Yasir Alfadhl, and Xiaodong Chen, "A wideband dual-circular-polarization horn antenna for mmWave wireless communications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 9, 1726-1730, 2019.
doi:10.1109/lawp.2019.2927933 Google Scholar
10. Zhao, Yun, Zhongxiang Shen, and Wen Wu, "Wideband and low-profile H-plane ridged SIW horn antenna mounted on a large conducting plane," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 11, 5895-5900, 2014.
doi:10.1109/tap.2014.2354420 Google Scholar
11. Han, Kangkang, Gao Wei, Siyuan Lei, Changlong Qiu, and Tiancheng Qiu, "A design of broadband dual circularly polarized antenna," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 31, No. 7, e22679, April 2021.
doi:10.1002/mmce.22679 Google Scholar
12. Ye, Jinyu, Haozhe Zhang, and Ran Chu, "Analysis of a new method to design a coaxial-to-rectangular waveguide transition," 2019 International Applied Computational Electromagnetics Society Symposium --- China (ACES), 1-2, Nanjing, China, August 08-11, 2019.
doi:10.23919/ACES48530.2019.9060514
13. Chen, Zhenting and Zhongxiang Shen, "Design of a compact phased array using 16 surface-wave antenna elements," 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), 1183-1184, Singapore, Singapore, December 04-10, 2021.
doi:10.1109/APS/URSI47566.2021.9704738
14. Tako, N., E. Levine, G. Kabilo, and H. Matzner, "Investigation of thick coax-to-waveguide transitions," The 8th European Conference on Antennas and Propagation (EuCAP 2014), 908-911, The Hague, Netherlands, April 06-11, 2014.
doi:10.1109/EuCAP.2014.6901909
15. Sadhukhan, Gautam and Satyajit Chakrabarti, "Dual feed dual circularly polarized horn antenna at Ka band," 2019 International Conference on Range Technology (ICORT), 1-4, Balasore, India, 2019.
doi:10.1109/ICORT46471.2019.9069606
16. Škiljo, Maja, Zoran Blažević, and Dragan Poljak, "Septum feed design for right and left circular polarisation," 2022 International Conference on Software, Telecommunications and Computer Networks (SoftCOM), 1-6, Split, Croatia, September 22-24, 2022.
doi:10.23919/SoftCOM55329.2022.9911291
17. Addamo, Giuseppe, Oscar A. Peverini, Diego Manfredi, Flaviana Calignano, Fabio Paonessa, Giuseppe Virone, Riccardo Tascone, and Gianluca Dassano, "Additive manufacturing of Ka-band dual-polarization waveguide components," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 8, 3589-3596, 2018.
doi:10.1109/tmtt.2018.2854187 Google Scholar
18. Fonseca, Nelson J. G. and Jean-Christophe Angevain, "C-band septum polarizers with polynomial profile and accurate axial ratio characterization in back-to-back configuration," IEEE Journal of Microwaves, Vol. 2, No. 4, 678-689, 2022.
doi:10.1109/jmw.2022.3191440 Google Scholar
19. Song, Kaijun and Quan Xue, "Planar probe coaxial-waveguide power combiner/divider," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 11, 2761-2767, 2009.
doi:10.1109/tmtt.2009.2032483 Google Scholar
20. Piltyay, Stepan, "Electromagnetic and bandwidth performance optimization of new waveguide polarizers with septum of a stepped-thickness type for satellite systems," Journal of Electromagnetic Waves and Applications, Vol. 36, No. 9, 1257-1272, 2022.
doi:10.1080/09205071.2021.2016500 Google Scholar
21. Huang, Y. Q. and C. A. Liu, "Waveguide-coaxial converter based on single-ridge waveguide impedance transformation in Ka band," 2020 3rd International Conference on Electron Device and Mechanical Engineering (ICEDME), 78-81, Suzhou, China, May 01-03, 2020.
doi:10.1109/ICEDME50972.2020.00024
22. Komarov, Vyacheslav V., Alexey I. Korchagin, and Valeriy P. Meschanov, "Broad-band coaxial-to-waveguide transition," 2020 International Conference on Actual Problems of Electron Devices Engineering (APEDE), 163-165, Saratov, Russia, September 24-25, 2020.
doi:10.1109/APEDE48864.2020.9255415
23. Jazani, Ghoncheh and Abbas Pirhadi, "Design of dual‐polarised (RHCP/LHCP) quad‐ridged horn antenna with wideband septum polariser waveguide feed," IET Microwaves, Antennas & Propagation, Vol. 12, No. 9, 1541-1545, 2018.
doi:10.1049/iet-map.2017.0611 Google Scholar
24. Xu, Zheng, Jiangbo Duan, Chengxiang Hao, Kuiwen Xu, Shichang Chen, Peng Zhao, and Yingfei Sun, "Compact wideband circularly polarized horn antenna with tapered slot‐coupled feeding for Ku‐band applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 10, e21898, July 2019.
doi:10.1002/mmce.21898 Google Scholar
25. Lu, Kai, Kwok Wa Leung, and Nan Yang, "3-D-printed circularly polarized twisted-ridge horn antenna," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 3, 1746-1750, March 2021.
doi:10.1109/tap.2020.3031764 Google Scholar
26. Shi, Jun, Xiaoxing Yin, and Weiye Zhong, "Design of a K-band feed network with dual circular polarization," 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), 1-3, Xi'an, China, October 16-19, 2017.
doi:10.1109/APCAP.2017.8420453
27. Li, Dan-Yang, Yong-Chang Jiao, Hong-Wei Yu, and Zi-Bin Weng, "Wideband circularly polarized pyramidal horn antenna based on spoof surface plasmon polaritons," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 4, 2353-2358, April 2021.
doi:10.1109/tap.2020.3019588 Google Scholar
28. Yusuf, Derry Permana, Josaphat Tetuko Sri Sumantyo, Yuki Yoshimoto, Steven Gao, and Koichi Ito, "Dual-band circularly polarised asymmetric Linear‐Tapered horn antenna for feeder of synthetic aperture radar onboard microsatellite," IET Microwaves, Antennas & Propagation, Vol. 19, No. 1, e70006, January 2025.
doi:10.1049/mia2.70006 Google Scholar
29. Leung, Kwok Wa, Chu-Tian Huang, Zheng Fang, Kai Lu, and Nan Yang, "Wideband circularly polarized horn antenna with twisted ridges of gielis super-formula contour," IEEE Transactions on Antennas and Propagation, Vol. 73, No. 2, 1197-1202, February 2025.
doi:10.1109/tap.2024.3489891 Google Scholar
30. Hossain, Md. Sazzad, Jane M. Lehr, Andrew Fierro, and Edl Schamiloglu, "A wideband coaxial-to-waveguide transition devised with topology optimization," Scientific Reports, Vol. 15, No. 1, 1974, January 2025.
doi:10.1038/s41598-025-85396-2 Google Scholar
31. Yousefian, Mohsen, Seyed Jalil Hosseini, and Masoud Dahmardeh, "Compact broadband coaxial to rectangular waveguide transition," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 9, 1239-1247, April 2019.
doi:10.1080/09205071.2019.1606737 Google Scholar
32. Cheng, Xiaohe, Yuan Yao, Tao Yu, Junsheng Yu, and Xiaodong Chen, "Wideband dual circularly polarized antipodal septum antenna for millimeter-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 6, 3549-3554, June 2021.
doi:10.1109/tap.2020.3037768 Google Scholar
33. Shen, Zhongxiang and Chao Feng, "A new dual-polarized broadband horn antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 270-273, 2005.
doi:10.1109/lawp.2005.852998 Google Scholar
34. Enayati, Pardis and Davoud Zarifi, "Design of a wideband coaxial-to-rectangular waveguide transition based on Supershapes," IEEE Access, Vol. 10, 121924-121929, 2022.
doi:10.1109/access.2022.3222796 Google Scholar
35. Gielis, Johan, "A generic geometric transformation that unifies a wide range of natural and abstract shapes," American Journal of Botany, Vol. 90, No. 3, 333-338, 2003.
doi:10.3732/ajb.90.3.333 Google Scholar
36. Gielis, Johan and Diego Caratelli, "Computer implemented tool box systems and methods," Google Patents, US 8,818,771 B2, 2014.
37. Chen, Ming and G. Tsandoulas, "A wide-band square-waveguide array polarizer," IEEE Transactions on Antennas and Propagation, Vol. 21, No. 3, 389-391, May 1973.
doi:10.1109/tap.1973.1140486 Google Scholar
38. Kim, Ilkyu and Yahya Rahmat-Samii, "Revisiting stepped septum circular polarizer using full-wave simulations," 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), 919-921, Spokane, WA, USA, 2011.
doi:10.1109/APS.2011.5996426
39. Balanis, Constantine A., Antenna Theory: Analysis and Design, 3rd Ed., John Wiley & Sons, 2005.
40. Milligan, T. A., Modern Antenna Design, 2nd Ed., John Wiley & Sons, 2005.
doi:10.1002/0471720615
41. Von Hippel, A., Dielectrics and Waves, MIT Press, Cambridge, MA, USA, 1954.
42. Collin, Robert E., Foundations for Microwave Engineering, Wiley-IEEE Press, Hoboken, NJ, USA, 2001.
doi:10.1109/9780470544662
43. Ramo, Simon, John R. Whinnery, and Theodore Van Duzer, Fields and Waves in Communication Electronics, John Wiley & Sons, New York, NY, USA, 1994.
44. Harrington, R. F., Time-Harmonic Electromagnetic Fields, Wiley-IEEE Press, New York, NY, USA, 2001.