1. Krupka, Jerzy, "Microwave measurements of electromagnetic properties of materials," Materials, Vol. 14, No. 17, 5097, 2021.
doi:10.3390/ma14175097 Google Scholar
2. Tao, Yuan, Bowen Yan, Daming Fan, Nana Zhang, Shenyan Ma, Liyun Wang, Yejun Wu, Mingfu Wang, Jianxin Zhao, and Hao Zhang, "Structural changes of starch subjected to microwave heating: A review from the perspective of dielectric properties," Trends in Food Science & Technology, Vol. 99, 593-607, 2020.
doi:10.1016/j.tifs.2020.02.020 Google Scholar
3. Pakkathillam, Jayaram Kizhekke, Balamurugan T. Sivaprakasam, Jayaprakash Poojali, C. V. Krishnamurthy, and Kavitha Arunachalam, "Tailoring antenna focal plane characteristics for a compact free-space microwave complex dielectric permittivity measurement setup," IEEE Transactions on Instrumentation and Measurement, Vol. 70, 1-12, 2021.
doi:10.1109/tim.2020.3013997 Google Scholar
4. Ebara, Hidetoshi, Takao Inoue, and Osamu Hashimoto, "Measurement method of complex permittivity and permeability for a powdered material using a waveguide in microwave band," Science and Technology of Advanced Materials, Vol. 7, No. 1, 77, 2006.
doi:10.1016/j.stam.2005.11.019 Google Scholar
5. Saad-Falcon, Alex, Zijian Zhang, David Ryoo, James Dee, Ryan S. Westafer, and James C. Gumbart, "Extraction of dielectric permittivity from atomistic molecular dynamics simulations and microwave measurements," The Journal of Physical Chemistry B, Vol. 126, No. 40, 8021-8029, 2022.
doi:10.1021/acs.jpcb.2c05260 Google Scholar
6. Ma, Jialu, Jingchao Tang, Kaicheng Wang, Lianghao Guo, Yubin Gong, and Shaomeng Wang, "Complex permittivity characterization of liquid samples based on a split ring resonator (SRR)," Sensors, Vol. 21, No. 10, 3385, 2021.
doi:10.3390/s21103385 Google Scholar
7. Talmoudi, Omaima, Lahcen Ait Benali, Jaouad Terhzaz, Abdelwahed Tribak, and Tomás Fernández-Ibáñez, "A novel hybrid 2D-FDTD-PML and Nelder–Mead methods for estimating liquid complex permittivity using a rectangular waveguide," Journal of Applied Physics, Vol. 137, No. 14, 144501, 2025.
doi:10.1063/5.0264173 Google Scholar
8. Talmoudi, Omaima, Álvaro Gómez-Gómez, Oscar Fernandez, Jaouad Terhzaz, Abdelwahed Tribak, and Tomás Fernández-Ibáñez, "Substrate integrated waveguide resonator sensor for X-band dielectric constant characterization," Journal of Applied Physics, Vol. 138, No. 7, 074503, 2025.
doi:10.1063/5.0280603 Google Scholar
9. Hasar, U. C. and A. Cansiz, "Simultaneous complex permittivity and thickness evaluation of liquid materials from scattering parameter measurements," Microwave and Optical Technology Letters, Vol. 52, No. 1, 75-78, 2010.
doi:10.1002/mop.24837 Google Scholar
10. Hasar, Ugur Cem, "Permittivity measurement of thin dielectric materials from reflection-only measurements using one-port vector network analyzers," Progress In Electromagnetics Research, Vol. 95, 365-380, 2009.
doi:10.2528/pier09062501 Google Scholar
11. Bois, K. J., L. F. Handjojo, A. D. Benally, K. Mubarak, and R. Zoughi, "Dielectric plug-loaded two-port transmission line measurement technique for dielectric property characterization of granular and liquid materials," IEEE Transactions on Instrumentation and Measurement, Vol. 48, No. 6, 1141-1148, 1999.
doi:10.1109/19.816128 Google Scholar
12. Bois, Karl, Aaron Benally, and Reza Zoughi, Two-port network analyzer dielectric constant measurement of granular or liquid materials for the study of cement based materials, 291-296, R. E. Green (ed.), Springer, 1998.
doi:10.1007/978-1-4615-4847-8_46
13. Terhzaz, Jaouad, Hassan Ammor, Abdelhadi Assir, and Ahmed Mamouni, "Application of the FDTD method to determine complex permittivity of dielectric materials at microwave frequencies using a rectangular waveguide," Microwave and Optical Technology Letters, Vol. 49, No. 8, 1964-1968, 2007.
doi:10.1002/mop.22611 Google Scholar
14. Krupezevic, D. V., V. J. Brankovic, and F. Arndt, "The wave-equation FD-TD method for the efficient eigenvalue analysis and S-matrix computation of waveguide structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 41, No. 12, 2109-2115, 1993.
doi:10.1109/22.260694 Google Scholar
15. Mosavirik, Tahoura, Vahid Nayyeri, Mohammad Hashemi, Mohammad Soleimani, and Omar M. Ramahi, "Direct permittivity reconstruction from power measurements using a machine learning aided method," IEEE Transactions on Microwave Theory and Techniques, Vol. 71, No. 10, 4437-4448, 2023.
doi:10.1109/tmtt.2023.3267390 Google Scholar
16. Qin, Jincheng, Zhifu Liu, Mingsheng Ma, and Yongxiang Li, "Machine learning approaches for permittivity prediction and rational design of microwave dielectric ceramics," Journal of Materiomics, Vol. 7, No. 6, 1284-1293, 2021.
doi:10.1016/j.jmat.2021.02.012 Google Scholar
17. Python Software Foundation "Python Optimization User’s Guide," 2022.
18. Nelder, J. A. and R. Mead, "A simplex method for function minimization," The Computer Journal, Vol. 7, No. 4, 308-313, 1965.
doi:10.1093/comjnl/7.4.308 Google Scholar
19. Ellison, W. J., "Permittivity of pure water, at standard atmospheric pressure, over the frequency range-25 THz and the temperature range-100 C," Journal of Physical and Chemical Reference Data, Vol. 36, No. 1, 1-18, 2007.
doi:10.1063/1.2360986 Google Scholar