Vol. 163
Latest Volume
All Volumes
PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-12-19
Broadband Validation of a 2D-FDTD-PML and Nelder-Mead Framework for Liquid Permittivity Extraction
By
Progress In Electromagnetics Research C, Vol. 163, 181-186, 2026
Abstract
A methodology for estimating the complex permittivity of liquid dielectrics is presented in a rectangular waveguide using the Ku-band (10-15 GHz, WR75). A two-dimensional finite difference time-domain (FDTD) model with perfectly matched layers (PMLs) serves as the forward solver, and TE10 modal projection provides the simulated scattering parameters. Subsequently, a gradient-free Nelder-Mead inversion extracts the real and imaginary parts of the permittivity from the measured S11 and S21 parameters. This approach is implemented in a multilayer fixture, which enables leak-tight loading while remaining analytically simple. Validation on air and water shows good agreement between simulation and measurement across 10-15 GHz, and results at 12 GHz are consistent with independent X-band extractions. This approach is computationally efficient, practical for experimentation, and can be extended to other liquids and multilayers.
Citation
Omaima Talmoudi, Lahcen Ait Benali, Jaouad Terhzaz, and Abdelwahed Tribak, "Broadband Validation of a 2D-FDTD-PML and Nelder-Mead Framework for Liquid Permittivity Extraction," Progress In Electromagnetics Research C, Vol. 163, 181-186, 2026.
doi:10.2528/PIERC25103006
References

1. Krupka, Jerzy, "Microwave measurements of electromagnetic properties of materials," Materials, Vol. 14, No. 17, 5097, 2021.
doi:10.3390/ma14175097

2. Tao, Yuan, Bowen Yan, Daming Fan, Nana Zhang, Shenyan Ma, Liyun Wang, Yejun Wu, Mingfu Wang, Jianxin Zhao, and Hao Zhang, "Structural changes of starch subjected to microwave heating: A review from the perspective of dielectric properties," Trends in Food Science & Technology, Vol. 99, 593-607, 2020.
doi:10.1016/j.tifs.2020.02.020

3. Pakkathillam, Jayaram Kizhekke, Balamurugan T. Sivaprakasam, Jayaprakash Poojali, C. V. Krishnamurthy, and Kavitha Arunachalam, "Tailoring antenna focal plane characteristics for a compact free-space microwave complex dielectric permittivity measurement setup," IEEE Transactions on Instrumentation and Measurement, Vol. 70, 1-12, 2021.
doi:10.1109/tim.2020.3013997

4. Ebara, Hidetoshi, Takao Inoue, and Osamu Hashimoto, "Measurement method of complex permittivity and permeability for a powdered material using a waveguide in microwave band," Science and Technology of Advanced Materials, Vol. 7, No. 1, 77, 2006.
doi:10.1016/j.stam.2005.11.019

5. Saad-Falcon, Alex, Zijian Zhang, David Ryoo, James Dee, Ryan S. Westafer, and James C. Gumbart, "Extraction of dielectric permittivity from atomistic molecular dynamics simulations and microwave measurements," The Journal of Physical Chemistry B, Vol. 126, No. 40, 8021-8029, 2022.
doi:10.1021/acs.jpcb.2c05260

6. Ma, Jialu, Jingchao Tang, Kaicheng Wang, Lianghao Guo, Yubin Gong, and Shaomeng Wang, "Complex permittivity characterization of liquid samples based on a split ring resonator (SRR)," Sensors, Vol. 21, No. 10, 3385, 2021.
doi:10.3390/s21103385

7. Talmoudi, Omaima, Lahcen Ait Benali, Jaouad Terhzaz, Abdelwahed Tribak, and Tomás Fernández-Ibáñez, "A novel hybrid 2D-FDTD-PML and Nelder–Mead methods for estimating liquid complex permittivity using a rectangular waveguide," Journal of Applied Physics, Vol. 137, No. 14, 144501, 2025.
doi:10.1063/5.0264173

8. Talmoudi, Omaima, Álvaro Gómez-Gómez, Oscar Fernandez, Jaouad Terhzaz, Abdelwahed Tribak, and Tomás Fernández-Ibáñez, "Substrate integrated waveguide resonator sensor for X-band dielectric constant characterization," Journal of Applied Physics, Vol. 138, No. 7, 074503, 2025.
doi:10.1063/5.0280603

9. Hasar, U. C. and A. Cansiz, "Simultaneous complex permittivity and thickness evaluation of liquid materials from scattering parameter measurements," Microwave and Optical Technology Letters, Vol. 52, No. 1, 75-78, 2010.
doi:10.1002/mop.24837

10. Hasar, Ugur Cem, "Permittivity measurement of thin dielectric materials from reflection-only measurements using one-port vector network analyzers," Progress In Electromagnetics Research, Vol. 95, 365-380, 2009.
doi:10.2528/pier09062501

11. Bois, K. J., L. F. Handjojo, A. D. Benally, K. Mubarak, and R. Zoughi, "Dielectric plug-loaded two-port transmission line measurement technique for dielectric property characterization of granular and liquid materials," IEEE Transactions on Instrumentation and Measurement, Vol. 48, No. 6, 1141-1148, 1999.
doi:10.1109/19.816128

12. Bois, Karl, Aaron Benally, and Reza Zoughi, Two-port network analyzer dielectric constant measurement of granular or liquid materials for the study of cement based materials, 291-296 Springer, 1998.
doi:10.1007/978-1-4615-4847-8_46

13. Terhzaz, Jaouad, Hassan Ammor, Abdelhadi Assir, and Ahmed Mamouni, "Application of the FDTD method to determine complex permittivity of dielectric materials at microwave frequencies using a rectangular waveguide," Microwave and Optical Technology Letters, Vol. 49, No. 8, 1964-1968, 2007.
doi:10.1002/mop.22611

14. Krupezevic, D. V., V. J. Brankovic, and F. Arndt, "The wave-equation FD-TD method for the efficient eigenvalue analysis and S-matrix computation of waveguide structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 41, No. 12, 2109-2115, 1993.
doi:10.1109/22.260694

15. Mosavirik, Tahoura, Vahid Nayyeri, Mohammad Hashemi, Mohammad Soleimani, and Omar M. Ramahi, "Direct permittivity reconstruction from power measurements using a machine learning aided method," IEEE Transactions on Microwave Theory and Techniques, Vol. 71, No. 10, 4437-4448, 2023.
doi:10.1109/tmtt.2023.3267390

16. Qin, Jincheng, Zhifu Liu, Mingsheng Ma, and Yongxiang Li, "Machine learning approaches for permittivity prediction and rational design of microwave dielectric ceramics," Journal of Materiomics, Vol. 7, No. 6, 1284-1293, 2021.
doi:10.1016/j.jmat.2021.02.012

17. Python Software Foundation "Python Optimization User’s Guide," 2022.

18. Nelder, J. A. and R. Mead, "A simplex method for function minimization," The Computer Journal, Vol. 7, No. 4, 308-313, 1965.
doi:10.1093/comjnl/7.4.308

19. Ellison, W. J., "Permittivity of pure water, at standard atmospheric pressure, over the frequency range-25 THz and the temperature range-100 C," Journal of Physical and Chemical Reference Data, Vol. 36, No. 1, 1-18, 2007.
doi:10.1063/1.2360986