Vol. 136
Latest Volume
All Volumes
PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2025-12-19
Design of Near-Field Focusing Optical Transparent Metasurface for Millimeter-Wave Communication
By
Progress In Electromagnetics Research M, Vol. 136, 77-85, 2025
Abstract
Low-emissivity glass, commonly employed in building curtain walls strongly reflects and weakly transmits millimeter-wave signals, thereby hindering signal propagation. To address this issue, this paper introduces a novel method that leverages the low-emissivity film itself to design a metasurface for enhanced signal transmission. Two specific metasurface designs are presented. The simulation results validate the proposed method. For the design targeting linearly polarized waves, a 23 dB enhancement in the transmitted electric field is achieved compared to that of uncoated glass. The design for circularly polarized waves achieves a 22 dB enhancement. Both metasurfaces exhibit excellent wide-angle performance, maintaining single-point focusing up to a 30° incidence angle with an electric field enhancement exceeding 15 dB. The proposed millimeter-wave transparent metasurface features a simple structure, supports wide-angle incidence, and can be deployed over large areas with adjustable focal points to meet communication requirements. This work provides a reliable solution for mitigating millimeter-wave transmission loss through low-emissivity glass.
Citation
Licong Fan, Yuan Yao, Jingchang Nan, and Yifei Wang, "Design of Near-Field Focusing Optical Transparent Metasurface for Millimeter-Wave Communication," Progress In Electromagnetics Research M, Vol. 136, 77-85, 2025.
doi:10.2528/PIERM25110902
References

1. Wei, Zhendian, Hao Xue, Yiceng Li, Shihao Zhao, Zizhong Chen, and Long Li, "A hybrid RF and solar integrated energy harvesting system using optically transparent metasurface," IEEE Transactions on Antennas and Propagation, Vol. 73, No. 2, 920-927, 2025.
doi:10.1109/tap.2024.3514200

2. Cai, Yang, Peng Mei, Xian Qi Lin, and Shuai Zhang, "Efficient beam manipulation with phase symmetry operations on transmitarrays for flat-top beams," IEEE Transactions on Antennas and Propagation, Vol. 72, No. 10, 7536-7545, 2024.
doi:10.1109/tap.2024.3440062

3. Kim, Byeongjin, Seungwoo Bang, Sunghyun Kim, Doyle Kwon, Seongkwan Kim, and Jungsuek Oh, "Locally optimal periods in periodic optically transparent two-metal-layered refractive metasurfaces for outdoor-to-indoor communication," IEEE Antennas and Wireless Propagation Letters, Vol. 24, No. 5, 1253-1257, 2025.
doi:10.1109/lawp.2025.3532301

4. Li, Long, Pei Zhang, Fangjie Cheng, Mingyang Chang, and Tie Jun Cui, "An optically transparent near-field focusing metasurface," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 4, 2015-2027, 2021.
doi:10.1109/tmtt.2021.3061475

5. Jiang, Rui Zhe, Qian Ma, Jing Cheng Liang, Qun Yan Zhou, Jun Yan Dai, Qiang Cheng, and Tie Jun Cui, "A single-layered wideband and wide-angle transparent metasurface for enhancing the EM-wave transmissions through glass," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 8, 6593-6605, 2023.
doi:10.1109/tap.2023.3281879

6. Hong, Seokyeon, Yongwan Kim, and Jungsuek Oh, "Automobile laminated glass window embedded transmitarray and ray tracing validation for enhanced 5G connectivity," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 8, 6671-6682, 2022.
doi:10.1109/tap.2022.3161432

7. Liu, Guang, Mohammad Reza Dehghani Kodnoeih, Kien Trung Pham, Eduardo Motta Cruz, David González-Ovejero, and Ronan Sauleau, "A millimeter-wave multibeam transparent transmitarray antenna at Ka-band," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 4, 631-635, 2019.
doi:10.1109/LAWP.2019.2899925

8. Abdelrahman, Ahmed H., Atef Z. Elsherbeni, and Fan Yang, "Transmission phase limit of multilayer frequency-selective surfaces for transmitarray designs," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 2, 690-697, 2014.
doi:10.1109/tap.2013.2289313

9. Zhang, Xingliang, Fan Yang, Shenheng Xu, Abdul Aziz, and Maokun Li, "Dual-layer transmitarray antenna with high transmission efficiency," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 8, 6003-6012, 2020.
doi:10.1109/tap.2020.2989555

10. Liu, Guang, Hong-Jian Wang, Jing-Shan Jiang, Fei Xue, and Min Yi, "A high-efficiency transmitarray antenna using double split ring slot elements," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1415-1418, 2015.
doi:10.1109/lawp.2015.2409474

11. Feng, Peng-Yu, Shi-Wei Qu, and Shiwen Yang, "Octave bandwidth transmitarrays with a flat gain," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 10, 5231-5238, 2018.
doi:10.1109/tap.2018.2858198

12. Dai, Xin, Geng-Bo Wu, and Kwai-Man Luk, "A wideband circularly polarized transmitarray antenna for millimeter-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 2, 1889-1894, 2023.
doi:10.1109/tap.2022.3215252

13. Kitayama, Daisuke, Yuto Hama, Kenta Goto, Kensuke Miyachi, Takeshi Motegi, and Osamu Kagaya, "Transparent dynamic metasurface for a visually unaffected reconfigurable intelligent surface: Controlling transmission/reflection and making a window into an RF lens," Optics Express, Vol. 29, No. 18, 29292-29307, 2021.
doi:10.1364/oe.435648

14. Kitayama, Daisuke, Adam Pander, Yuto Hama, and Hiroyuki Takahashi, "Alignment-free twisted-split-ring metasurface on single substrate with 2π phase range for linearly polarized sub-terahertz wave," Optics Express, Vol. 31, No. 13, 20769-20786, 2023.
doi:10.1364/oe.494319

15. Wang, Shuming, Pin Chieh Wu, Vin-Cent Su, Yi-Chieh Lai, Cheng Hung Chu, Jia-Wern Chen, Shen-Hung Lu, Ji Chen, Beibei Xu, Chieh-Hsiung Kuan, et al., "Broadband achromatic optical metasurface devices," Nature Communications, Vol. 8, No. 1, 187, 2017.
doi:10.1038/s41467-017-00166-7

16. Soghi, Sahar, Hamid Heidar, Mohammad Reza Haraty, and Vahid Nayyeri, "Single-layer broadband optically transparent metamaterial absorber using gold thin film," IEEE Transactions on Microwave Theory and Techniques, Vol. 72, No. 6, 3743-3752, 2024.
doi:10.1109/tmtt.2023.3331018

17. Nguyen, Mai Anh and Gangil Byun, "Anisotropic metagratings with a polarization selective layer for anomalous wide-angle reflection and polarization conversion," IEEE Transactions on Antennas and Propagation, Vol. 72, No. 10, 7961-7969, 2024.
doi:10.1109/tap.2024.3451146

18. Cai, Xinqi, Zuntian Chu, Fan Wu, Xinmin Fu, Huiting Sun, Yajuan Han, Jie Yang, Ruichao Zhu, Tonghao Liu, and Jiafu Wang, "Metasurface window with customized transparency for sunlight and switchable transmission for microwaves," IEEE Transactions on Microwave Theory and Techniques, Vol. 73, No. 7, 3670-3682, 2025.
doi:10.1109/tmtt.2024.3512670

19. Kim, Byeongjin and Jungsuek Oh, "Single-glass-layer optically transparent transmitarray with high aperture efficiency and low profile at 5G millimeter-wave band," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 11, 9036-9041, 2023.
doi:10.1109/tap.2023.3305876

20. Safari, Mahdi, Yuchu He, Minseok Kim, Nazir P. Kherani, and George V. Eleftheriades, "Optically and radio frequency (RF) transparent meta-glass," Nanophotonics, Vol. 9, No. 12, 3889-3898, 2020.
doi:10.1515/nanoph-2020-0056

21. Safari, Mahdi, Nazir P. Kherani, and Geroge V. Eleftheriades, "Multi-functional metasurface: Visibly and RF transparent, NIR control and low thermal emissivity," Advanced Optical Materials, Vol. 9, No. 17, 2100176, 2021.
doi:10.1002/adom.202100176

22. Huang, J., Te-Kao Wu, and Shung-Wu Lee, "Tri-band frequency selective surface with circular ring elements," IEEE Transactions on Antennas and Propagation, Vol. 42, No. 2, 166-175, 1994.
doi:10.1109/8.277210

23. Zhang, Fan, Xiaohe Cheng, and Yuan Yao, "A passive transparent metasurface based on low-emissivity glass," 2024 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, Bejing, China, 2024.
doi:10.1109/ICMMT61774.2024.10672190

24. Li, Jinxing, Aloke Jana, Yueyi Yuan, Kuang Zhang, Shah Nawaz Burokur, and Patrice Genevet, "Exploiting hidden singularity on the surface of the Poincaré sphere," Nature Communications, Vol. 16, No. 1, 5953, 2025.
doi:10.1038/s41467-025-60956-2

25. Yuan, Yueyi, Wenjie Zhou, Ruogu Wang, Yuxiang Wang, Yongkang Dong, Shah Nawaz Burokur, and Kuang Zhang, "Non-orthogonal metasurfaces for channel-locked spin-orbital transitions," Advanced Photonics, Vol. 7, No. 5, 056009, 2025.
doi:10.1117/1.ap.7.5.056009

26. Li, Hao, Yong-Qiang Pang, Bing-Yue Qu, Jiang-Shan Zheng, and Zhuo Xu, "Optical transparent metasurface lenses and their wireless communication efficiency enhancement," Acta Physica Sinica, Vol. 73, No. 14, 144104, 2024.
doi:10.7498/aps.73.20240464