Vol. 137
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2026-01-27
A Hybrid Quantum Transport Simulator for MOSFETs Using Non-Equilibrium Green's Function and FDTD
By
Progress In Electromagnetics Research M, Vol. 137, 1-12, 2026
Abstract
Based on the time-dependent Schrӧdinger equation, a finite-difference time-domain (FDTD) method is proposed to investigate electron propagation with the presence of tunneling potential distributions in metal-oxide-semiconductor field-effect transistors (MOSFETs). The channel current equation in the drift-diffusion model for classical transport is derived from the probability current formula with a plane wave assumption of the electron's state function. In both classical and quantum regimes, channel currents are numerically simulated based on quantum transport in MOSFETs using transmission functions and Fermi-Dirac distributions. The transmission function is obtained from the non-equilibrium Green's function (NEGF), indicating the probability of electrons through a channel. To determine the number of electrons at both source and drain terminals of a MOSFET, the Fermi-Dirac distributions are calculated. Numerical simulations of channel currents with various external gate-source and drain-source voltages are investigated, showing that a similar peak channel current can be generated with lower external voltages in a smaller MOSFET with a shorter gate length. Electron forward and backward propagations are obtained through FDTD simulations to demonstrate the difference of cutoff modes in classical and quantum MOSFETs.
Citation
Kai Ren, "A Hybrid Quantum Transport Simulator for MOSFETs Using Non-Equilibrium Green's Function and FDTD," Progress In Electromagnetics Research M, Vol. 137, 1-12, 2026.
doi:10.2528/PIERM25112603
References

1. Moore, Gordon E., "Cramming more components onto integrated circuits," Electronics, Vol. 38, No. 8, 1965.
doi:10.1109/N-SSC.2006.4785860        Google Scholar

2. Moore, Gordon E., "Lithography and the future of Moore's law," IEEE Solid-State Circuits Society Newsletter, Vol. 11, No. 3, 37-42, 2006.
doi:10.1109/n-ssc.2006.4785861        Google Scholar

3. Fowler, Ralph Howard and L. Nordheim, "Electron emission in intense electric fields," Proc. R. Soc. A, Vol. 119, No. 781, 173-181, May 1928.
doi:10.1098/rspa.1928.0091        Google Scholar

4. Lenzlinger, M. and E. H. Snow, "Fowler-Nordheim tunneling into thermally grown SiO2," IEEE Transactions on Electron Devices, Vol. 15, No. 9, 686-686, Sep. 1968.
doi:10.1109/t-ed.1968.16430        Google Scholar

5. Fowler, A. B., G. L. Timp, J. J. Wainer, and Richard A. Webb, "Observation of resonant tunneling in silicon inversion layers," Physical Review Letters, Vol. 57, No. 1, 138-141, 1986.
doi:10.1103/physrevlett.57.138        Google Scholar

6. Zhou, J.-R. and D. K. Ferry, "Simulation of ultra-small GaAs MESFET using quantum moment equations," IEEE Transactions on Electron Devices, Vol. 39, No. 3, 473-478, Mar. 1992.
doi:10.1109/16.123465        Google Scholar

7. Degond, P. and A. El Ayyadi, "A coupled Schrödinger drift-diffusion model for quantum semiconductor device simulations," Journal of Computational Physics, Vol. 181, No. 1, 222-259, Sep. 2002.
doi:10.1006/jcph.2002.7122        Google Scholar

8. Grasser, T., Ting-Wei Tang, H. Kosina, and S. Selberherr, "A review of hydrodynamic and energy-transport models for semiconductor device simulation," Proceedings of the IEEE, Vol. 91, No. 2, 251-274, Feb. 2003.
doi:10.1109/jproc.2002.808150        Google Scholar

9. De Falco, Carlo, Emilio Gatti, Andrea L. Lacaita, and Riccardo Sacco, "Quantum-corrected drift-diffusion models for transport in semiconductor devices," Journal of Computational Physics, Vol. 204, No. 2, 533-561, Apr. 2005.
doi:10.1016/j.jcp.2004.10.029        Google Scholar

10. Ahn, C. and M. Shin, "Ballistic quantum transport in nanoscale Schottky-barrier tunnel transistors," IEEE Transactions on Nanotechnology, Vol. 5, No. 3, 278-283, May 2006.
doi:10.1109/TNANO.2006.874042        Google Scholar

11. Yang, T.-Y., A. Ruffino, J. Michniewicz, Y. Peng, E. Charbon, and M. F. Gonzalez-Zalba, "Quantum transport in 40-nm MOSFETs at deep-cryogenic temperatures," IEEE Electron Device Letters, Vol. 41, No. 7, 981-984, 2020.
doi:10.1109/led.2020.2995645        Google Scholar

12. Chen, Yuefeng, Yuanke Zhang, Jixiang Huang, Jun Xu, Chao Luo, and Guoping Guo, "Compact modeling of quantum transport in 55-nm MOSFETs at cryogenic temperatures," IEEE Electron Device Letters, Vol. 44, No. 9, 1392-1395, Sep. 2023.
doi:10.1109/led.2023.3299592        Google Scholar

13. Ferry, David K., Josef Weinbub, Mihail Nedjalkov, and Siegfried Selberherr, "A review of quantum transport in field-effect transistors," Semiconductor Science and Technology, Vol. 37, No. 4, 043001, 2022.
doi:10.1088/1361-6641/ac4405        Google Scholar

14. Baym, Gordon and Leo P. Kadanoff, "Conservation laws and correlation functions," Physical Review, Vol. 124, No. 2, 287, Oct. 1961.
doi:10.1103/physrev.124.287        Google Scholar

15. Keldysh, L. V., "Diagram technique for nonequilibrium processes," Soviet Phys. JETP, Vol. 20, No. 4, 1018-1026, 1965.
doi:10.1142/9789811279461_0007        Google Scholar

16. Danielewicz, P., "Quantum theory of nonequilibrium processes, I," Annals of Physics, Vol. 152, No. 2, 239-304, 1984.
doi:10.1016/0003-4916(84)90092-7        Google Scholar

17. Meir, Yigal and Ned S. Wingreen, "Landauer formula for the current through an interacting electron region," Physical Review Letters, Vol. 68, No. 16, 2512, Apr. 1992.
doi:10.1103/physrevlett.68.2512        Google Scholar

18. Venugopal, R., Z. Ren, S. Datta, M. S. Lundstrom, and D. Jovanovic, "Simulating quantum transport in nanoscale transistors: Real versus mode-space approaches," Journal of Applied Physics, Vol. 92, No. 7, 3730-3739, Oct. 2002.
doi:10.1063/1.1503165        Google Scholar

19. Jiménez, D., B. Iñíguez, J. Suñé, and J. J. Sáenz, "Analog performance of the nanoscale double-gate metal-oxide-semiconductor field-effect-transistor near the ultimate scaling limits," Journal of Applied Physics, Vol. 96, No. 9, 5271-5276, Nov. 2004.
doi:10.1063/1.1778485        Google Scholar

20. Arefinia, Zahra, "Nonequilibrium Green's function treatment of a new nanoscale dual-material double-gate MOSFET," Physica E: Low-dimensional Systems and Nanostructures, Vol. 43, No. 5, 1105-1110, Mar. 2011.
doi:10.1016/j.physe.2011.01.010        Google Scholar

21. Khan, H. R., D. Mamaluy, and D. Vasileska, "3D NEGF quantum transport simulator for modeling ballistic transport in nano FinFETs," Journal of Physics: Conference Series, Vol. 107, No. 1, 012007, 2008.
doi:10.1088/1742-6596/107/1/012007

22. Lansbergen, G. P., R. Rahman, C. J. Wellard, I. Woo, J. Caro, N. Collaert, S. Biesemans, G. Klimeck, L. C. L. Hollenberg, and S. Rogge, "Gate-induced quantum-confinement transition of a single dopant atom in a silicon FinFET," Nature Physics, Vol. 4, No. 8, 656-661, Aug. 2008.
doi:10.1038/nphys994        Google Scholar

23. Martinez, Antonio, Anna Price, Raul Valin, Manuel Aldegunde, and John Barker, "Impact of phonon scattering in Si/GaAs/InGaAs nanowires and FinFets: A NEGF perspective," Journal of Computational Electronics, Vol. 15, No. 4, 1130-1147, 2016.
doi:10.1007/s10825-016-0851-0        Google Scholar

24. Bousari, Nazanin Baghban, Mohammad K. Anvarifard, and Saeed Haji-Nasiri, "Benefitting from high-κ spacer engineering in balistic triple-gate junctionless FinFET - A full quantum study," Silicon, Vol. 12, No. 9, 2221-2228, 2020.
doi:10.1007/s12633-019-00318-y        Google Scholar

25. Mech, Bhubon Chandra, Kalyan Koley, and Jitendra Kumar, "The understanding of SiNR and GNR TFETs for analog and RF application with variation of drain-doping molar fraction," IEEE Transactions on Electron Devices, Vol. 65, No. 10, 4694-4700, Oct. 2018.
doi:10.1109/ted.2018.2867443        Google Scholar

26. M'foukh, Adel, Marco G. Pala, and David Esseni, "Full-band quantum transport of heterojunction electron devices with empirical pseudopotentials," IEEE Transactions on Electron Devices, Vol. 67, No. 12, 5662-5668, Dec. 2020.
doi:10.1109/ted.2020.3029548        Google Scholar

27. Berrada, Salim, Hamilton Carrillo-Nunez, Jaehyun Lee, Cristina Medina-Bailon, Tapas Dutta, Oves Badami, Fikru Adamu-Lema, Vasanthan Thirunavukkarasu, Vihar Georgiev, and Asen Asenov, "Nano-electronic Simulation Software (NESS): A flexible nano-device simulation platform," Journal of Computational Electronics, Vol. 19, No. 3, 1031-1046, 2020.
doi:10.1007/s10825-020-01519-0        Google Scholar

28. Mil'nikov, Gennady, Jun-Ichi Iwata, Nobuya Mori, and Atsushi Oshiyama, "RSDFT-NEGF transport simulations in realistic nanoscale transistors," Journal of Computational Electronics, Vol. 22, No. 5, 1181-1201, 2023.
doi:10.1007/s10825-023-02046-4        Google Scholar

29. Zhu, Junyan, Jiang Cao, Chen Song, Bo Li, and Zhengsheng Han, "Numerical investigation on the convergence of self-consistent Schrödinger-Poisson equations in semiconductor device transport simulation," Nanotechnology, Vol. 35, No. 31, 315001, May 2024.
doi:10.1088/1361-6528/ad4558        Google Scholar

30. Zhu, Junyan, Jiang Cao, Chen Song, Bo Li, and Zhengsheng Han, "Jiezi: An open-source Python software for simulating quantum transport based on non-equilibrium Green's function formalism," Computer Physics Communications, Vol. 302, 109251, 2024.
doi:10.1016/j.cpc.2024.109251        Google Scholar

31. Zou, Jijie, Zhanghao Zhouyin, Dongying Lin, Yike Huang, Linfeng Zhang, Shimin Hou, and Qiangqiang Gu, "Deep learning accelerated quantum transport simulations in nanoelectronics: From break junctions to field-effect transistors," NPJ Computational Materials, Vol. 11, 375, 2025.
doi:10.1038/s41524-025-01853-6        Google Scholar

32. Vecil, Francesco, José Miguel Mantas, and Pedro Alonso-Jordá, "Efficient GPU implementation of a Boltzmann-Schrödinger-Poisson solver for the simulation of nanoscale DG MOSFETs," The Journal of Supercomputing, Vol. 79, No. 12, 13370-13401, 2023.
doi:10.1007/s11227-023-05189-0        Google Scholar

33. Zhu, Xiaohui and Huaxiang Yin, "Hybrid simulation method of quantum characteristics for advanced Si MOSFETs under extreme conditions by incorporating simplified master equation with TCAD," Results in Physics, Vol. 63, 107856, Aug. 2024.
doi:10.1016/j.rinp.2024.107856        Google Scholar

34. Espiñeira, Gabriel, Antonio J. García-Loureiro, and Natalia Seoane, "Parallel approach of Schrödinger-based quantum corrections for ultrascaled semiconductor devices," Journal of Computational Electronics, Vol. 21, 10-20, 2022.
doi:10.1007/s10825-021-01823-3        Google Scholar

35. Kim, Kyoung Yeon, Hong-Hyun Park, Seonghoon Jin, Uihui Kwon, Woosung Choi, and Dae Sin Kim, "Quantum transport through a constriction in nanosheet gate-all-around transistors," Communications Engineering, Vol. 4, No. 1, 92, 2025.
doi:10.1038/s44172-025-00435-0        Google Scholar

36. Datta, Supriyo, Quantum Transport: Atom to Transistor, Cambridge University Press, New York, NY, 2005.
doi:10.1017/cbo9781139164313

37. Visscher, P. B., "A fast explicit algorithm for the time-dependent Schrödinger equation," Computers in Physics, Vol. 5, No. 6, 596-598, Nov. 1991.
doi:10.1063/1.168415        Google Scholar

38. Sullivan, Dennis M. and D. S. Citrin, "Determination of the eigenfunctions of arbitrary nanostructures using time domain simulation," Journal of Applied Physics, Vol. 91, No. 5, 3219-3226, Mar. 2002.
doi:10.1063/1.1445277        Google Scholar

39. Sullivan, Dennis M. and D. S. Citrin, "Determining quantum eigenfunctions in three-dimensional nanoscale structures," Journal of Applied Physics, Vol. 97, No. 10, 104305, May 2005.
doi:10.1063/1.1896437        Google Scholar

40. Soriano, Antonio, Enrique A. Navarro, Jorge A. Portı́, and Vicente Such, "Analysis of the finite difference time domain technique to solve the Schrödinger equation for quantum devices," Journal of Applied Physics, Vol. 95, No. 12, 8011-8018, Jun. 2004.
doi:10.1063/1.1753661        Google Scholar

41. Nagel, J. R., "A review and application of the finite-difference time-domain algorithm applied to the Schrödinger equation," Applied Computational Electromagnetics Society Journal (ACES), Vol. 24, No. 1, 1-8, Jun. 2022.        Google Scholar

42. Sullivan, Dennis M., Sean Mossman, and Mark G. Kuzyk, "Time-domain simulation of three dimensional quantum wires," PLoS ONE, Vol. 11, No. 4, e0153802, 2016.
doi:10.1371/journal.pone.0153802        Google Scholar

43. Decleer, Pieter, Arne Van Londersele, Hendrik Rogier, and Dries Vande Ginste, "Nonuniform and higher-order FDTD methods for the Schrödinger equation," Journal of Computational and Applied Mathematics, Vol. 381, 113023, Jan. 2021.
doi:10.1016/j.cam.2020.113023        Google Scholar

44. Bekmambetova, Fadime and Piero Triverio, "Calculation and conservation of probability and energy in the numerical solution of the Schrödinger equation with the finite-difference time-domain method," IEEE Transactions on Microwave Theory and Techniques, Vol. 72, No. 4, 2110-2129, Apr. 2024.
doi:10.1109/TMTT.2023.3308198        Google Scholar

45. Du, Kangshuai, Shilie He, Chengzhuo Zhao, Na Liu, and Qing Huo Liu, "A 3-D spectral element time-domain method with perfectly matched layers for transient Schrödinger equation," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 9, 188-197, 2024.
doi:10.1109/JMMCT.2024.3399911        Google Scholar

46. Tan, Eng Leong and Ding Yu Heh, "Critical-point-based stability analyses of finite-difference time-domain methods for Schrödinger equation incorporating vector and scalar potentials," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 10, 38-46, 2025.
doi:10.1109/JMMCT.2024.3502830        Google Scholar

47. Ren, Kai, "FDTD in computational electromagnetics and quantum transport," 2025 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), 16-17, Boulder, CO, USA, Jan. 2025.
doi:10.23919/USNC-URSINRSM66067.2025.10907204