1. Moore, Gordon E., "Cramming more components onto integrated circuits," Electronics, Vol. 38, No. 8, 1965.
doi:10.1109/N-SSC.2006.4785860 Google Scholar
2. Moore, Gordon E., "Lithography and the future of Moore's law," IEEE Solid-State Circuits Society Newsletter, Vol. 11, No. 3, 37-42, 2006.
doi:10.1109/n-ssc.2006.4785861 Google Scholar
3. Fowler, Ralph Howard and L. Nordheim, "Electron emission in intense electric fields," Proc. R. Soc. A, Vol. 119, No. 781, 173-181, May 1928.
doi:10.1098/rspa.1928.0091 Google Scholar
4. Lenzlinger, M. and E. H. Snow, "Fowler-Nordheim tunneling into thermally grown SiO2," IEEE Transactions on Electron Devices, Vol. 15, No. 9, 686-686, Sep. 1968.
doi:10.1109/t-ed.1968.16430 Google Scholar
5. Fowler, A. B., G. L. Timp, J. J. Wainer, and Richard A. Webb, "Observation of resonant tunneling in silicon inversion layers," Physical Review Letters, Vol. 57, No. 1, 138-141, 1986.
doi:10.1103/physrevlett.57.138 Google Scholar
6. Zhou, J.-R. and D. K. Ferry, "Simulation of ultra-small GaAs MESFET using quantum moment equations," IEEE Transactions on Electron Devices, Vol. 39, No. 3, 473-478, Mar. 1992.
doi:10.1109/16.123465 Google Scholar
7. Degond, P. and A. El Ayyadi, "A coupled Schrödinger drift-diffusion model for quantum semiconductor device simulations," Journal of Computational Physics, Vol. 181, No. 1, 222-259, Sep. 2002.
doi:10.1006/jcph.2002.7122 Google Scholar
8. Grasser, T., Ting-Wei Tang, H. Kosina, and S. Selberherr, "A review of hydrodynamic and energy-transport models for semiconductor device simulation," Proceedings of the IEEE, Vol. 91, No. 2, 251-274, Feb. 2003.
doi:10.1109/jproc.2002.808150 Google Scholar
9. De Falco, Carlo, Emilio Gatti, Andrea L. Lacaita, and Riccardo Sacco, "Quantum-corrected drift-diffusion models for transport in semiconductor devices," Journal of Computational Physics, Vol. 204, No. 2, 533-561, Apr. 2005.
doi:10.1016/j.jcp.2004.10.029 Google Scholar
10. Ahn, C. and M. Shin, "Ballistic quantum transport in nanoscale Schottky-barrier tunnel transistors," IEEE Transactions on Nanotechnology, Vol. 5, No. 3, 278-283, May 2006.
doi:10.1109/TNANO.2006.874042 Google Scholar
11. Yang, T.-Y., A. Ruffino, J. Michniewicz, Y. Peng, E. Charbon, and M. F. Gonzalez-Zalba, "Quantum transport in 40-nm MOSFETs at deep-cryogenic temperatures," IEEE Electron Device Letters, Vol. 41, No. 7, 981-984, 2020.
doi:10.1109/led.2020.2995645 Google Scholar
12. Chen, Yuefeng, Yuanke Zhang, Jixiang Huang, Jun Xu, Chao Luo, and Guoping Guo, "Compact modeling of quantum transport in 55-nm MOSFETs at cryogenic temperatures," IEEE Electron Device Letters, Vol. 44, No. 9, 1392-1395, Sep. 2023.
doi:10.1109/led.2023.3299592 Google Scholar
13. Ferry, David K., Josef Weinbub, Mihail Nedjalkov, and Siegfried Selberherr, "A review of quantum transport in field-effect transistors," Semiconductor Science and Technology, Vol. 37, No. 4, 043001, 2022.
doi:10.1088/1361-6641/ac4405 Google Scholar
14. Baym, Gordon and Leo P. Kadanoff, "Conservation laws and correlation functions," Physical Review, Vol. 124, No. 2, 287, Oct. 1961.
doi:10.1103/physrev.124.287 Google Scholar
15. Keldysh, L. V., "Diagram technique for nonequilibrium processes," Soviet Phys. JETP, Vol. 20, No. 4, 1018-1026, 1965.
doi:10.1142/9789811279461_0007 Google Scholar
16. Danielewicz, P., "Quantum theory of nonequilibrium processes, I," Annals of Physics, Vol. 152, No. 2, 239-304, 1984.
doi:10.1016/0003-4916(84)90092-7 Google Scholar
17. Meir, Yigal and Ned S. Wingreen, "Landauer formula for the current through an interacting electron region," Physical Review Letters, Vol. 68, No. 16, 2512, Apr. 1992.
doi:10.1103/physrevlett.68.2512 Google Scholar
18. Venugopal, R., Z. Ren, S. Datta, M. S. Lundstrom, and D. Jovanovic, "Simulating quantum transport in nanoscale transistors: Real versus mode-space approaches," Journal of Applied Physics, Vol. 92, No. 7, 3730-3739, Oct. 2002.
doi:10.1063/1.1503165 Google Scholar
19. Jiménez, D., B. Iñíguez, J. Suñé, and J. J. Sáenz, "Analog performance of the nanoscale double-gate metal-oxide-semiconductor field-effect-transistor near the ultimate scaling limits," Journal of Applied Physics, Vol. 96, No. 9, 5271-5276, Nov. 2004.
doi:10.1063/1.1778485 Google Scholar
20. Arefinia, Zahra, "Nonequilibrium Green's function treatment of a new nanoscale dual-material double-gate MOSFET," Physica E: Low-dimensional Systems and Nanostructures, Vol. 43, No. 5, 1105-1110, Mar. 2011.
doi:10.1016/j.physe.2011.01.010 Google Scholar
21. Khan, H. R., D. Mamaluy, and D. Vasileska, "3D NEGF quantum transport simulator for modeling ballistic transport in nano FinFETs," Journal of Physics: Conference Series, Vol. 107, No. 1, 012007, 2008.
doi:10.1088/1742-6596/107/1/012007
22. Lansbergen, G. P., R. Rahman, C. J. Wellard, I. Woo, J. Caro, N. Collaert, S. Biesemans, G. Klimeck, L. C. L. Hollenberg, and S. Rogge, "Gate-induced quantum-confinement transition of a single dopant atom in a silicon FinFET," Nature Physics, Vol. 4, No. 8, 656-661, Aug. 2008.
doi:10.1038/nphys994 Google Scholar
23. Martinez, Antonio, Anna Price, Raul Valin, Manuel Aldegunde, and John Barker, "Impact of phonon scattering in Si/GaAs/InGaAs nanowires and FinFets: A NEGF perspective," Journal of Computational Electronics, Vol. 15, No. 4, 1130-1147, 2016.
doi:10.1007/s10825-016-0851-0 Google Scholar
24. Bousari, Nazanin Baghban, Mohammad K. Anvarifard, and Saeed Haji-Nasiri, "Benefitting from high-κ spacer engineering in balistic triple-gate junctionless FinFET - A full quantum study," Silicon, Vol. 12, No. 9, 2221-2228, 2020.
doi:10.1007/s12633-019-00318-y Google Scholar
25. Mech, Bhubon Chandra, Kalyan Koley, and Jitendra Kumar, "The understanding of SiNR and GNR TFETs for analog and RF application with variation of drain-doping molar fraction," IEEE Transactions on Electron Devices, Vol. 65, No. 10, 4694-4700, Oct. 2018.
doi:10.1109/ted.2018.2867443 Google Scholar
26. M'foukh, Adel, Marco G. Pala, and David Esseni, "Full-band quantum transport of heterojunction electron devices with empirical pseudopotentials," IEEE Transactions on Electron Devices, Vol. 67, No. 12, 5662-5668, Dec. 2020.
doi:10.1109/ted.2020.3029548 Google Scholar
27. Berrada, Salim, Hamilton Carrillo-Nunez, Jaehyun Lee, Cristina Medina-Bailon, Tapas Dutta, Oves Badami, Fikru Adamu-Lema, Vasanthan Thirunavukkarasu, Vihar Georgiev, and Asen Asenov, "Nano-electronic Simulation Software (NESS): A flexible nano-device simulation platform," Journal of Computational Electronics, Vol. 19, No. 3, 1031-1046, 2020.
doi:10.1007/s10825-020-01519-0 Google Scholar
28. Mil'nikov, Gennady, Jun-Ichi Iwata, Nobuya Mori, and Atsushi Oshiyama, "RSDFT-NEGF transport simulations in realistic nanoscale transistors," Journal of Computational Electronics, Vol. 22, No. 5, 1181-1201, 2023.
doi:10.1007/s10825-023-02046-4 Google Scholar
29. Zhu, Junyan, Jiang Cao, Chen Song, Bo Li, and Zhengsheng Han, "Numerical investigation on the convergence of self-consistent Schrödinger-Poisson equations in semiconductor device transport simulation," Nanotechnology, Vol. 35, No. 31, 315001, May 2024.
doi:10.1088/1361-6528/ad4558 Google Scholar
30. Zhu, Junyan, Jiang Cao, Chen Song, Bo Li, and Zhengsheng Han, "Jiezi: An open-source Python software for simulating quantum transport based on non-equilibrium Green's function formalism," Computer Physics Communications, Vol. 302, 109251, 2024.
doi:10.1016/j.cpc.2024.109251 Google Scholar
31. Zou, Jijie, Zhanghao Zhouyin, Dongying Lin, Yike Huang, Linfeng Zhang, Shimin Hou, and Qiangqiang Gu, "Deep learning accelerated quantum transport simulations in nanoelectronics: From break junctions to field-effect transistors," NPJ Computational Materials, Vol. 11, 375, 2025.
doi:10.1038/s41524-025-01853-6 Google Scholar
32. Vecil, Francesco, José Miguel Mantas, and Pedro Alonso-Jordá, "Efficient GPU implementation of a Boltzmann-Schrödinger-Poisson solver for the simulation of nanoscale DG MOSFETs," The Journal of Supercomputing, Vol. 79, No. 12, 13370-13401, 2023.
doi:10.1007/s11227-023-05189-0 Google Scholar
33. Zhu, Xiaohui and Huaxiang Yin, "Hybrid simulation method of quantum characteristics for advanced Si MOSFETs under extreme conditions by incorporating simplified master equation with TCAD," Results in Physics, Vol. 63, 107856, Aug. 2024.
doi:10.1016/j.rinp.2024.107856 Google Scholar
34. Espiñeira, Gabriel, Antonio J. García-Loureiro, and Natalia Seoane, "Parallel approach of Schrödinger-based quantum corrections for ultrascaled semiconductor devices," Journal of Computational Electronics, Vol. 21, 10-20, 2022.
doi:10.1007/s10825-021-01823-3 Google Scholar
35. Kim, Kyoung Yeon, Hong-Hyun Park, Seonghoon Jin, Uihui Kwon, Woosung Choi, and Dae Sin Kim, "Quantum transport through a constriction in nanosheet gate-all-around transistors," Communications Engineering, Vol. 4, No. 1, 92, 2025.
doi:10.1038/s44172-025-00435-0 Google Scholar
36. Datta, Supriyo, Quantum Transport: Atom to Transistor, Cambridge University Press, New York, NY, 2005.
doi:10.1017/cbo9781139164313
37. Visscher, P. B., "A fast explicit algorithm for the time-dependent Schrödinger equation," Computers in Physics, Vol. 5, No. 6, 596-598, Nov. 1991.
doi:10.1063/1.168415 Google Scholar
38. Sullivan, Dennis M. and D. S. Citrin, "Determination of the eigenfunctions of arbitrary nanostructures using time domain simulation," Journal of Applied Physics, Vol. 91, No. 5, 3219-3226, Mar. 2002.
doi:10.1063/1.1445277 Google Scholar
39. Sullivan, Dennis M. and D. S. Citrin, "Determining quantum eigenfunctions in three-dimensional nanoscale structures," Journal of Applied Physics, Vol. 97, No. 10, 104305, May 2005.
doi:10.1063/1.1896437 Google Scholar
40. Soriano, Antonio, Enrique A. Navarro, Jorge A. Portı́, and Vicente Such, "Analysis of the finite difference time domain technique to solve the Schrödinger equation for quantum devices," Journal of Applied Physics, Vol. 95, No. 12, 8011-8018, Jun. 2004.
doi:10.1063/1.1753661 Google Scholar
41. Nagel, J. R., "A review and application of the finite-difference time-domain algorithm applied to the Schrödinger equation," Applied Computational Electromagnetics Society Journal (ACES), Vol. 24, No. 1, 1-8, Jun. 2022. Google Scholar
42. Sullivan, Dennis M., Sean Mossman, and Mark G. Kuzyk, "Time-domain simulation of three dimensional quantum wires," PLoS ONE, Vol. 11, No. 4, e0153802, 2016.
doi:10.1371/journal.pone.0153802 Google Scholar
43. Decleer, Pieter, Arne Van Londersele, Hendrik Rogier, and Dries Vande Ginste, "Nonuniform and higher-order FDTD methods for the Schrödinger equation," Journal of Computational and Applied Mathematics, Vol. 381, 113023, Jan. 2021.
doi:10.1016/j.cam.2020.113023 Google Scholar
44. Bekmambetova, Fadime and Piero Triverio, "Calculation and conservation of probability and energy in the numerical solution of the Schrödinger equation with the finite-difference time-domain method," IEEE Transactions on Microwave Theory and Techniques, Vol. 72, No. 4, 2110-2129, Apr. 2024.
doi:10.1109/TMTT.2023.3308198 Google Scholar
45. Du, Kangshuai, Shilie He, Chengzhuo Zhao, Na Liu, and Qing Huo Liu, "A 3-D spectral element time-domain method with perfectly matched layers for transient Schrödinger equation," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 9, 188-197, 2024.
doi:10.1109/JMMCT.2024.3399911 Google Scholar
46. Tan, Eng Leong and Ding Yu Heh, "Critical-point-based stability analyses of finite-difference time-domain methods for Schrödinger equation incorporating vector and scalar potentials," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 10, 38-46, 2025.
doi:10.1109/JMMCT.2024.3502830 Google Scholar
47. Ren, Kai, "FDTD in computational electromagnetics and quantum transport," 2025 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), 16-17, Boulder, CO, USA, Jan. 2025.
doi:10.23919/USNC-URSINRSM66067.2025.10907204