Vol. 137
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2026-02-16
Anisotropic Modeling of the Electromagnetic Response of 3D-Printed Carbon Nanotube/Polymer Nanocomposites for Shielding Applications
By
Progress In Electromagnetics Research M, Vol. 137, 24-33, 2026
Abstract
This study explores the anisotropic electromagnetic properties of carbon nanotube (CNT)/polylactic acid (PLA) nanocomposites, fabricated in-house and shaped using traditional compression molding and advanced 3D printing techniques. By examining the effects of CNT content (ranging over 1-4 wt.% (weight percent)) and 3D printing path orientation, this research investigates how these factors influence shielding effectiveness (SE) and the corresponding nanocomposite complex dielectric permittivity tensor. Notably, a significant variation in SE was observed between the different printing path orientations, with a difference of over 20 dB at 4 wt.% CNT. Experimental measurements were used to develop an anisotropic model for the complex dielectric permittivity, with the permittivity components for samples at 4 wt.% CNT extracted to be 36.5-j44.5 along the printing direction (ε||) and 8.3-j3.1 in the perpendicular direction (ε) over the X-band frequency range (8.2-12.4 GHz). These findings demonstrate that CNT alignment during 3D printing induces highly directional electromagnetic properties. Furthermore, we demonstrate that anisotropic simulation models provide a more accurate prediction of the electromagnetic response of 3D-printed nanocomposite structures than isotropic models. In brief, this study emphasizes the necessity of considering anisotropic properties in the design and simulation of 3D-printed nanocomposites for electromagnetic shielding and other applications.
Citation
Ailar Sedghara, Ehsan Khoshbakhti, Hadi Hosseini, Mohammad Arjmand, and Loïc Markley, "Anisotropic Modeling of the Electromagnetic Response of 3D-Printed Carbon Nanotube/Polymer Nanocomposites for Shielding Applications," Progress In Electromagnetics Research M, Vol. 137, 24-33, 2026.
doi:10.2528/PIERM25121402
References

1. Wang, Hao, Shaonan Li, Mengyue Liu, Jihang Li, and Xing Zhou, "Review on shielding mechanism and structural design of electromagnetic interference shielding composites," Macromolecular Materials and Engineering, Vol. 306, No. 6, 2100032, 2021.
doi:10.1002/mame.202100032        Google Scholar

2. Yang, Y., M. C. Gupta, J. N. Zalameda, and W. P. Winfree, "Dispersion behaviour, thermal and electrical conductivities of carbon nanotube-polystyrene nanocomposites," Micro & Nano Letters, Vol. 3, No. 2, 35-40, 2008.
doi:10.1049/mnl:20070073        Google Scholar

3. Murariu, Marius and Philippe Dubois, "PLA composites: From production to properties," Advanced Drug Delivery Reviews, Vol. 107, 17-46, 2016.
doi:10.1016/j.addr.2016.04.003        Google Scholar

4. Kaseem, Mosab, Kotiba Hamad, Fawaz Deri, and Young Gun Ko, "A review on recent researches on polylactic acid/carbon nanotube composites," Polymer Bulletin, Vol. 74, No. 7, 2921-2937, 2017.
doi:10.1007/s00289-016-1861-6        Google Scholar

5. Spinelli, Giovanni, Rumiana Kotsilkova, Evgeni Ivanov, Vladimir Georgiev, Carlo Naddeo, and Vittorio Romano, "Thermal and dielectric properties of 3D printed parts based on polylactic acid filled with carbon nanostructures," Macromolecular Symposia, Vol. 405, No. 1, 2100244, 2022.
doi:10.1002/masy.202100244

6. Wu, Wei, Tao Liu, Dongli Zhang, Qijun Sun, Ke Cao, Junwei Zha, Yang Lu, Bin Wang, Xianwu Cao, Yanhong Feng, Vellaisamy A. L. Roy, and Robert K. Y. Li, "Significantly improved dielectric properties of polylactide nanocomposites via TiO2 decorated carbon nanotubes," Composites Part A: Applied Science and Manufacturing, Vol. 127, 105650, 2019.
doi:10.1016/j.compositesa.2019.105650        Google Scholar

7. Catarinucci, Luca, Riccardo Colella, Paolo Coppola, and Luciano Tarricone, "Microwave characterisation of polylactic acid for 3D-printed dielectrically controlled substrates," IET Microwaves, Antennas & Propagation, Vol. 11, No. 14, 1970-1976, 2017.
doi:10.1049/iet-map.2017.0498        Google Scholar

8. Dichtl, Claudius, Pit Sippel, and Stephan Krohns, "Dielectric properties of 3D printed polylactic acid," Advances in Materials Science and Engineering, Vol. 2017, No. 1, 6913835, 2017.
doi:10.1155/2017/6913835        Google Scholar

9. Bertašius, Povilas, Artyom Plyushch, Jan Macutkevič, Jūras Banys, Algirdas Selskis, Oskars Platnieks, and Sergejs Gaidukovs, "Multilayered composites with carbon nanotubes for electromagnetic shielding application," Polymers, Vol. 15, No. 4, 1053, 2023.
doi:10.3390/polym15041053        Google Scholar

10. Beltrán, Freddys R., Hammouche Aksas, Lakhdar Sidi Salah, Yann Danlée, and Isabelle Huynen, "Theoretical prediction of electrical conductivity percolation of poly (lactic acid) --- Carbon nanotube composites in DC and RF regime," Materials, Vol. 16, No. 15, 5356, 2023.
doi:10.3390/ma16155356        Google Scholar

11. Guan, L.-Z. and L.-C. Tang, "Dispersion and alignment of carbon nanotubes in polymer matrix," Handbook of Carbon Nanotubes, 1-35, Springer, 2021.
doi:10.1007/978-3-030-91346-5_4

12. Arjmand, Mohammad, Thomas Apperley, Michal Okoniewski, and Uttandaraman Sundararaj, "Comparative study of electromagnetic interference shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene composites," Carbon, Vol. 50, No. 14, 5126-5134, 2012.
doi:10.1016/j.carbon.2012.06.053        Google Scholar

13. Khan, Shafi Ullah, Jayaram R. Pothnis, and Jang-Kyo Kim, "Effects of carbon nanotube alignment on electrical and mechanical properties of epoxy nanocomposites," Composites Part A: Applied Science and Manufacturing, Vol. 49, 26-34, 2013.
doi:10.1016/j.compositesa.2013.01.015        Google Scholar

14. Nakamoto, Takeshi and Shinya Kojima, "Layered thin film micro parts reinforced with aligned short fibers in laser stereolithography by applying magnetic field," Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol. 6, No. 6, 849-858, 2012.
doi:10.1299/jamdsm.6.849        Google Scholar

15. Haslam, Michael D. and Bart Raeymaekers, "Aligning carbon nanotubes using bulk acoustic waves to reinforce polymer composites," Composites Part B: Engineering, Vol. 60, 91-97, 2014.
doi:10.1016/j.compositesb.2013.12.027        Google Scholar

16. Li, Jia, Tao Guan, Zixi Zhang, Yu-Tong Fu, Fang-Liang Guo, Pei Huang, Zheling Li, Yuan-Qing Li, and Shao-Yun Fu, "Orientation of discontinuous fillers in polymer composites: Modelling, characterization, control and applications," Progress in Materials Science, Vol. 148, 101360, 2025.
doi:10.1016/j.pmatsci.2024.101360        Google Scholar

17. Oussai, Alaeddine, Zoltán Bártfai, and László Kátai, "Development of 3D printing raw materials from plastic waste. A case study on recycled polyethylene terephthalate," Applied Sciences, Vol. 11, No. 16, 7338, 2021.
doi:10.3390/app11167338        Google Scholar

18. Alarifi, Ibrahim M., "Revolutionising fabrication advances and applications of 3D printing with composite materials: A review," Virtual and Physical Prototyping, Vol. 19, No. 1, e2390504, 2024.
doi:10.1080/17452759.2024.2390504        Google Scholar

19. Zohdi, Nima and R. Yang, "Material anisotropy in additively manufactured polymers and polymer composites: A review," Polymers, Vol. 13, No. 19, 3368, 2021.
doi:10.3390/polym13193368        Google Scholar

20. Truman, Logan, Emily Whitwam, Brittany B. Nelson-Cheeseman, and Lucas J. Koerner, "Conductive 3D printing: Resistivity dependence upon infill pattern and application to EMI shielding," Journal of Materials Science: Materials in Electronics, Vol. 31, No. 17, 14108-14117, 2020.
doi:10.1007/s10854-020-03965-9        Google Scholar

21. Wu, Tianyu, Xianhua Huan, Hongmingjian Zhang, Lingyun Wu, Gang Sui, and Xiaoping Yang, "The orientation and inhomogeneous distribution of carbon nanofibers and distinctive internal structure in polymer composites induced by 3D-printing enabling electromagnetic shielding regulation," Journal of Colloid and Interface Science, Vol. 638, 392-402, 2023.
doi:10.1016/j.jcis.2023.02.014        Google Scholar

22. Harmon, Aaron, Wei Zhang, and Victor Khilkevich, "On the permittivity of XT-CF20," 2023 IEEE Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMC+SIPI), 390-394, Grand Rapids, MI, USA, 2023.
doi:10.1109/EMCSIPI50001.2023.10241427

23. Harmon, Aaron, Victor Khilkevich, and Kristen M. Donnell, "High permittivity anisotropic 3D printed material," 2022 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI), 1-6, Spokane, WA, USA, 2022.
doi:10.1109/EMCSI39492.2022.9889552

24. Mahaut, Victor, Tristan Dubois, Alexandrine Gracia, Gabriel Foyer, and Wilson Maia, "Assessment of the shielding efficiency of FDM-produced continuous carbon fiber composites," 2024 25th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), 1-6, Catania, Italy, 2024.
doi:10.1109/EuroSimE60745.2024.10491540

25. Compton, Brett G. and Jennifer A. Lewis, "3D-printing of lightweight cellular composites," Advanced Materials, Vol. 26, No. 34, 5930-5935, 2014.
doi:10.1002/adma.201401804        Google Scholar

26. Isari, Ali Akbar, Ahmadreza Ghaffarkhah, Seyyed Alireza Hashemi, Stefan Wuttke, and Mohammad Arjmand, "Structural design for EMI shielding: From underlying mechanisms to common pitfalls," Advanced Materials, Vol. 36, No. 24, 2310683, 2024.
doi:10.1002/adma.202310683        Google Scholar

27. Kazani, I., G. De Mey, C. Hertleer, J. Banaszczyk, A. Schwarz, G. Guxho, and L. Van Langenhove, "About the collinear four-point probe technique's inability to measure the resistivity of anisotropic electroconductive fabrics," Textile Research Journal, Vol. 83, No. 15, 1587-1593, 2013.
doi:10.1177/0040517512452951        Google Scholar

28. Barnes, Howard A., "A review of the rheology of filled viscoelastic systems," Rheology Reviews, 1-36, 2003.        Google Scholar

29. Es-Said, O. S., J. Foyos, R. Noorani, M. Mendelson, R. Marloth, and B. A. Pregger, "Effect of layer orientation on mechanical properties of rapid prototyped samples," Materials and Manufacturing Processes, Vol. 15, No. 1, 107-122, 2000.
doi:10.1080/10426910008912976        Google Scholar

30. Mazzanti, Valentina, Lorenzo Malagutti, and Francesco Mollica, "FDM 3D printing of polymers containing natural fillers: A review of their mechanical properties," Polymers, Vol. 11, No. 7, 1094, 2019.
doi:10.3390/polym11071094        Google Scholar

31. Abbasi, Samaneh, Pierre J. Carreau, and Abdessalem Derdouri, "Flow induced orientation of multiwalled carbon nanotubes in polycarbonate nanocomposites: Rheology, conductivity and mechanical properties," Polymer, Vol. 51, No. 4, 922-935, 2010.
doi:10.1016/j.polymer.2009.12.041        Google Scholar

32. Verma, Pawan, Taruna Bansala, Sampat Singh Chauhan, Devendra Kumar, Suleyman Deveci, and S. Kumar, "Electromagnetic interference shielding performance of carbon nanostructure reinforced, 3D printed polymer composites," Journal of Materials Science, Vol. 56, No. 20, 11769-11788, 2021.
doi:10.1007/s10853-021-05985-0        Google Scholar

33. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Transactions on Instrumentation and Measurement, Vol. 19, No. 4, 377-382, 1970.
doi:10.1109/tim.1970.4313932        Google Scholar

34. Costa, Filippo, Michele Borgese, Marco Degiorgi, and Agostino Monorchio, "Electromagnetic characterisation of materials by using transmission/reflection (T/R) devices," Electronics, Vol. 6, No. 4, 95, 2017.
doi:10.3390/electronics6040095        Google Scholar

35. Chen, Haidong, Jun Zhang, Yi Wang, Wenquan Che, Zhengsheng Huang, Yuanjian Qiao, Junrong Luo, and Quan Xue, "An improved NRW method for thin material characterization using dielectric filled waveguide and numerical compensation," IEEE Transactions on Instrumentation and Measurement, Vol. 71, 1-9, 2022.
doi:10.1109/tim.2021.3129205        Google Scholar

36. Jiang, Mei-Juan, Zhi-Min Dang, Michael Bozlar, Fabien Miomandre, and Jinbo Bai, "Broad-frequency dielectric behaviors in multiwalled carbon nanotube/rubber nanocomposites," Journal of Applied Physics, Vol. 106, No. 8, 084902, 2009.
doi:10.1063/1.3238306        Google Scholar

37. Nelson, J. Keith and John C. Fothergill, "Internal charge behaviour of nanocomposites," Nanotechnology, Vol. 15, No. 5, 586, 2004.
doi:10.1088/0957-4484/15/5/032        Google Scholar

38. Xu, Ning, Ping Pu Yong, and Zhuo Wang, "Large dielectric constant and Maxwell-Wagner effects in BaTiO3/Cu composites," Journal of the American Ceramic Society, Vol. 95, No. 3, 999-1003, 2012.
doi:10.1111/j.1551-2916.2011.04895.x        Google Scholar

39. Cao, Wen-Qiang, Qi Zheng, Lin Li, Chuan-Bao Cao, and Mao-Sheng Cao, "Dielectric genetic tailoring strategy dominating MoSe2@rGO assembled architecture with electromagnetic functions," Journal of Advanced Ceramics, Vol. 13, No. 9, 1461-1472, 2024.
doi:10.26599/JAC.2024.9220950        Google Scholar

40. Mikki, Said M. and Ahmed A. Kishk, "Mean-field electrodynamic theory of aligned carbon nanotube composites," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 5, 1412-1419, 2009.
doi:10.1109/tap.2009.2016687        Google Scholar

41. Nefedov, I. S. and S. A. Tretyakov, "Effective medium model for two-dimensional periodic arrays of carbon nanotubes," Photonics and Nanostructures --- Fundamentals and Applications, Vol. 9, No. 4, 374-380, 2011.
doi:10.1016/j.photonics.2011.04.005        Google Scholar