1. Wang, Hao, Shaonan Li, Mengyue Liu, Jihang Li, and Xing Zhou, "Review on shielding mechanism and structural design of electromagnetic interference shielding composites," Macromolecular Materials and Engineering, Vol. 306, No. 6, 2100032, 2021.
doi:10.1002/mame.202100032 Google Scholar
2. Yang, Y., M. C. Gupta, J. N. Zalameda, and W. P. Winfree, "Dispersion behaviour, thermal and electrical conductivities of carbon nanotube-polystyrene nanocomposites," Micro & Nano Letters, Vol. 3, No. 2, 35-40, 2008.
doi:10.1049/mnl:20070073 Google Scholar
3. Murariu, Marius and Philippe Dubois, "PLA composites: From production to properties," Advanced Drug Delivery Reviews, Vol. 107, 17-46, 2016.
doi:10.1016/j.addr.2016.04.003 Google Scholar
4. Kaseem, Mosab, Kotiba Hamad, Fawaz Deri, and Young Gun Ko, "A review on recent researches on polylactic acid/carbon nanotube composites," Polymer Bulletin, Vol. 74, No. 7, 2921-2937, 2017.
doi:10.1007/s00289-016-1861-6 Google Scholar
5. Spinelli, Giovanni, Rumiana Kotsilkova, Evgeni Ivanov, Vladimir Georgiev, Carlo Naddeo, and Vittorio Romano, "Thermal and dielectric properties of 3D printed parts based on polylactic acid filled with carbon nanostructures," Macromolecular Symposia, Vol. 405, No. 1, 2100244, 2022.
doi:10.1002/masy.202100244
6. Wu, Wei, Tao Liu, Dongli Zhang, Qijun Sun, Ke Cao, Junwei Zha, Yang Lu, Bin Wang, Xianwu Cao, Yanhong Feng, Vellaisamy A. L. Roy, and Robert K. Y. Li, "Significantly improved dielectric properties of polylactide nanocomposites via TiO2 decorated carbon nanotubes," Composites Part A: Applied Science and Manufacturing, Vol. 127, 105650, 2019.
doi:10.1016/j.compositesa.2019.105650 Google Scholar
7. Catarinucci, Luca, Riccardo Colella, Paolo Coppola, and Luciano Tarricone, "Microwave characterisation of polylactic acid for 3D-printed dielectrically controlled substrates," IET Microwaves, Antennas & Propagation, Vol. 11, No. 14, 1970-1976, 2017.
doi:10.1049/iet-map.2017.0498 Google Scholar
8. Dichtl, Claudius, Pit Sippel, and Stephan Krohns, "Dielectric properties of 3D printed polylactic acid," Advances in Materials Science and Engineering, Vol. 2017, No. 1, 6913835, 2017.
doi:10.1155/2017/6913835 Google Scholar
9. Bertašius, Povilas, Artyom Plyushch, Jan Macutkevič, Jūras Banys, Algirdas Selskis, Oskars Platnieks, and Sergejs Gaidukovs, "Multilayered composites with carbon nanotubes for electromagnetic shielding application," Polymers, Vol. 15, No. 4, 1053, 2023.
doi:10.3390/polym15041053 Google Scholar
10. Beltrán, Freddys R., Hammouche Aksas, Lakhdar Sidi Salah, Yann Danlée, and Isabelle Huynen, "Theoretical prediction of electrical conductivity percolation of poly (lactic acid) --- Carbon nanotube composites in DC and RF regime," Materials, Vol. 16, No. 15, 5356, 2023.
doi:10.3390/ma16155356 Google Scholar
11. Guan, L.-Z. and L.-C. Tang, "Dispersion and alignment of carbon nanotubes in polymer matrix," Handbook of Carbon Nanotubes, 1-35, Springer, 2021.
doi:10.1007/978-3-030-91346-5_4
12. Arjmand, Mohammad, Thomas Apperley, Michal Okoniewski, and Uttandaraman Sundararaj, "Comparative study of electromagnetic interference shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene composites," Carbon, Vol. 50, No. 14, 5126-5134, 2012.
doi:10.1016/j.carbon.2012.06.053 Google Scholar
13. Khan, Shafi Ullah, Jayaram R. Pothnis, and Jang-Kyo Kim, "Effects of carbon nanotube alignment on electrical and mechanical properties of epoxy nanocomposites," Composites Part A: Applied Science and Manufacturing, Vol. 49, 26-34, 2013.
doi:10.1016/j.compositesa.2013.01.015 Google Scholar
14. Nakamoto, Takeshi and Shinya Kojima, "Layered thin film micro parts reinforced with aligned short fibers in laser stereolithography by applying magnetic field," Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol. 6, No. 6, 849-858, 2012.
doi:10.1299/jamdsm.6.849 Google Scholar
15. Haslam, Michael D. and Bart Raeymaekers, "Aligning carbon nanotubes using bulk acoustic waves to reinforce polymer composites," Composites Part B: Engineering, Vol. 60, 91-97, 2014.
doi:10.1016/j.compositesb.2013.12.027 Google Scholar
16. Li, Jia, Tao Guan, Zixi Zhang, Yu-Tong Fu, Fang-Liang Guo, Pei Huang, Zheling Li, Yuan-Qing Li, and Shao-Yun Fu, "Orientation of discontinuous fillers in polymer composites: Modelling, characterization, control and applications," Progress in Materials Science, Vol. 148, 101360, 2025.
doi:10.1016/j.pmatsci.2024.101360 Google Scholar
17. Oussai, Alaeddine, Zoltán Bártfai, and László Kátai, "Development of 3D printing raw materials from plastic waste. A case study on recycled polyethylene terephthalate," Applied Sciences, Vol. 11, No. 16, 7338, 2021.
doi:10.3390/app11167338 Google Scholar
18. Alarifi, Ibrahim M., "Revolutionising fabrication advances and applications of 3D printing with composite materials: A review," Virtual and Physical Prototyping, Vol. 19, No. 1, e2390504, 2024.
doi:10.1080/17452759.2024.2390504 Google Scholar
19. Zohdi, Nima and R. Yang, "Material anisotropy in additively manufactured polymers and polymer composites: A review," Polymers, Vol. 13, No. 19, 3368, 2021.
doi:10.3390/polym13193368 Google Scholar
20. Truman, Logan, Emily Whitwam, Brittany B. Nelson-Cheeseman, and Lucas J. Koerner, "Conductive 3D printing: Resistivity dependence upon infill pattern and application to EMI shielding," Journal of Materials Science: Materials in Electronics, Vol. 31, No. 17, 14108-14117, 2020.
doi:10.1007/s10854-020-03965-9 Google Scholar
21. Wu, Tianyu, Xianhua Huan, Hongmingjian Zhang, Lingyun Wu, Gang Sui, and Xiaoping Yang, "The orientation and inhomogeneous distribution of carbon nanofibers and distinctive internal structure in polymer composites induced by 3D-printing enabling electromagnetic shielding regulation," Journal of Colloid and Interface Science, Vol. 638, 392-402, 2023.
doi:10.1016/j.jcis.2023.02.014 Google Scholar
22. Harmon, Aaron, Wei Zhang, and Victor Khilkevich, "On the permittivity of XT-CF20," 2023 IEEE Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMC+SIPI), 390-394, Grand Rapids, MI, USA, 2023.
doi:10.1109/EMCSIPI50001.2023.10241427
23. Harmon, Aaron, Victor Khilkevich, and Kristen M. Donnell, "High permittivity anisotropic 3D printed material," 2022 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI), 1-6, Spokane, WA, USA, 2022.
doi:10.1109/EMCSI39492.2022.9889552
24. Mahaut, Victor, Tristan Dubois, Alexandrine Gracia, Gabriel Foyer, and Wilson Maia, "Assessment of the shielding efficiency of FDM-produced continuous carbon fiber composites," 2024 25th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), 1-6, Catania, Italy, 2024.
doi:10.1109/EuroSimE60745.2024.10491540
25. Compton, Brett G. and Jennifer A. Lewis, "3D-printing of lightweight cellular composites," Advanced Materials, Vol. 26, No. 34, 5930-5935, 2014.
doi:10.1002/adma.201401804 Google Scholar
26. Isari, Ali Akbar, Ahmadreza Ghaffarkhah, Seyyed Alireza Hashemi, Stefan Wuttke, and Mohammad Arjmand, "Structural design for EMI shielding: From underlying mechanisms to common pitfalls," Advanced Materials, Vol. 36, No. 24, 2310683, 2024.
doi:10.1002/adma.202310683 Google Scholar
27. Kazani, I., G. De Mey, C. Hertleer, J. Banaszczyk, A. Schwarz, G. Guxho, and L. Van Langenhove, "About the collinear four-point probe technique's inability to measure the resistivity of anisotropic electroconductive fabrics," Textile Research Journal, Vol. 83, No. 15, 1587-1593, 2013.
doi:10.1177/0040517512452951 Google Scholar
28. Barnes, Howard A., "A review of the rheology of filled viscoelastic systems," Rheology Reviews, 1-36, 2003. Google Scholar
29. Es-Said, O. S., J. Foyos, R. Noorani, M. Mendelson, R. Marloth, and B. A. Pregger, "Effect of layer orientation on mechanical properties of rapid prototyped samples," Materials and Manufacturing Processes, Vol. 15, No. 1, 107-122, 2000.
doi:10.1080/10426910008912976 Google Scholar
30. Mazzanti, Valentina, Lorenzo Malagutti, and Francesco Mollica, "FDM 3D printing of polymers containing natural fillers: A review of their mechanical properties," Polymers, Vol. 11, No. 7, 1094, 2019.
doi:10.3390/polym11071094 Google Scholar
31. Abbasi, Samaneh, Pierre J. Carreau, and Abdessalem Derdouri, "Flow induced orientation of multiwalled carbon nanotubes in polycarbonate nanocomposites: Rheology, conductivity and mechanical properties," Polymer, Vol. 51, No. 4, 922-935, 2010.
doi:10.1016/j.polymer.2009.12.041 Google Scholar
32. Verma, Pawan, Taruna Bansala, Sampat Singh Chauhan, Devendra Kumar, Suleyman Deveci, and S. Kumar, "Electromagnetic interference shielding performance of carbon nanostructure reinforced, 3D printed polymer composites," Journal of Materials Science, Vol. 56, No. 20, 11769-11788, 2021.
doi:10.1007/s10853-021-05985-0 Google Scholar
33. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Transactions on Instrumentation and Measurement, Vol. 19, No. 4, 377-382, 1970.
doi:10.1109/tim.1970.4313932 Google Scholar
34. Costa, Filippo, Michele Borgese, Marco Degiorgi, and Agostino Monorchio, "Electromagnetic characterisation of materials by using transmission/reflection (T/R) devices," Electronics, Vol. 6, No. 4, 95, 2017.
doi:10.3390/electronics6040095 Google Scholar
35. Chen, Haidong, Jun Zhang, Yi Wang, Wenquan Che, Zhengsheng Huang, Yuanjian Qiao, Junrong Luo, and Quan Xue, "An improved NRW method for thin material characterization using dielectric filled waveguide and numerical compensation," IEEE Transactions on Instrumentation and Measurement, Vol. 71, 1-9, 2022.
doi:10.1109/tim.2021.3129205 Google Scholar
36. Jiang, Mei-Juan, Zhi-Min Dang, Michael Bozlar, Fabien Miomandre, and Jinbo Bai, "Broad-frequency dielectric behaviors in multiwalled carbon nanotube/rubber nanocomposites," Journal of Applied Physics, Vol. 106, No. 8, 084902, 2009.
doi:10.1063/1.3238306 Google Scholar
37. Nelson, J. Keith and John C. Fothergill, "Internal charge behaviour of nanocomposites," Nanotechnology, Vol. 15, No. 5, 586, 2004.
doi:10.1088/0957-4484/15/5/032 Google Scholar
38. Xu, Ning, Ping Pu Yong, and Zhuo Wang, "Large dielectric constant and Maxwell-Wagner effects in BaTiO3/Cu composites," Journal of the American Ceramic Society, Vol. 95, No. 3, 999-1003, 2012.
doi:10.1111/j.1551-2916.2011.04895.x Google Scholar
39. Cao, Wen-Qiang, Qi Zheng, Lin Li, Chuan-Bao Cao, and Mao-Sheng Cao, "Dielectric genetic tailoring strategy dominating MoSe2@rGO assembled architecture with electromagnetic functions," Journal of Advanced Ceramics, Vol. 13, No. 9, 1461-1472, 2024.
doi:10.26599/JAC.2024.9220950 Google Scholar
40. Mikki, Said M. and Ahmed A. Kishk, "Mean-field electrodynamic theory of aligned carbon nanotube composites," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 5, 1412-1419, 2009.
doi:10.1109/tap.2009.2016687 Google Scholar
41. Nefedov, I. S. and S. A. Tretyakov, "Effective medium model for two-dimensional periodic arrays of carbon nanotubes," Photonics and Nanostructures --- Fundamentals and Applications, Vol. 9, No. 4, 374-380, 2011.
doi:10.1016/j.photonics.2011.04.005 Google Scholar