Vol. 166
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-02-09
Photovoltaic Power Prediction Model Based on Fuzzy Entropy Clustering and Self-Attention Mechanism Combined with ICEEMDAN-WOA-CNN-BiLSTM
By
Progress In Electromagnetics Research C, Vol. 166, 27-40, 2026
Abstract
To address the randomness and nonlinearity of photovoltaic (PV) power caused by meteorological factors, this paper proposes an ICEEMDAN-WOA-CNN-BiLSTM prediction model integrated with fuzzy entropy clustering and a self-attention mechanism. First, the original PV power sequence is decomposed into multiple multi-scale intrinsic mode function (IMF) components and residuals via the Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN). Subsequently, components with similar complexity are merged using fuzzy entropy clustering to simplify the calculations. Then, the Whale Optimization Algorithm (WOA) is adopted to optimize the hyperparameters of the CNN-BiLSTM model, and the self-attention mechanism is integrated into the model to enhance the weights of key features. Comparative experiments demonstrate that the proposed model significantly outperforms single and traditional hybrid models in terms of Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Coefficient of Determination (R2). This can effectively improve the accuracy of short-term PV power prediction and provide support for power station dispatching and power grid stability.
Citation
Zhongan Yu, Faneng Wu, Zhiwei Huang, Zihao Deng, and Feng Zhang, "Photovoltaic Power Prediction Model Based on Fuzzy Entropy Clustering and Self-Attention Mechanism Combined with ICEEMDAN-WOA-CNN-BiLSTM," Progress In Electromagnetics Research C, Vol. 166, 27-40, 2026.
doi:10.2528/PIERC25122407
References

1. Shi, Jingli and Yue Zhao, "Challenges and pathways for tripling renewable energy capacity globally by 2030," Chinese Journal of Urban and Environmental Studies, Vol. 13, No. 1, 2550004, 2025.
doi:10.1142/s2345748125500046        Google Scholar

2. Liu, Yingying and Zhongping Wang, "Robust and efficient multihorizon photovoltaic power forecasting with a dilated multi-scale transformer," Solar Energy, Vol. 302, 114077, 2025.
doi:10.1016/j.solener.2025.114077        Google Scholar

3. Li, Jun and Qibo Liu, "Forecasting of short-term photovoltaic power generation using combined interval type-2 Takagi-Sugeno-Kang fuzzy systems," International Journal of Electrical Power & Energy Systems, Vol. 140, 108002, 2022.
doi:10.1016/j.ijepes.2022.108002        Google Scholar

4. Erdener, Burcin Cakir, Cong Feng, Kate Doubleday, Anthony Florita, and Bri-Mathias Hodge, "A review of behind-the-meter solar forecasting," Renewable and Sustainable Energy Reviews, Vol. 160, 112224, 2022.
doi:10.1016/j.rser.2022.112224        Google Scholar

5. Wang, Kejun, Xiaoxia Qi, and Hongda Liu, "A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network," Applied Energy, Vol. 251, 113315, 2019.
doi:10.1016/j.apenergy.2019.113315        Google Scholar

6. Gaboitaolelwe, Jwaone, Adamu Murtala Zungeru, Abid Yahya, Caspar K. Lebekwe, Dasari Naga Vinod, and Ayodeji Olalekan Salau, "Machine learning based solar photovoltaic power forecasting: A review and comparison," IEEE Access, Vol. 11, 40820-40845, 2023.
doi:10.1109/access.2023.3270041        Google Scholar

7. Gigoni, Lorenzo, Alessandro Betti, Emanuele Crisostomi, Alessandro Franco, Mauro Tucci, Fabrizio Bizzarri, and Debora Mucci, "Day-ahead hourly forecasting of power generation from photovoltaic plants," IEEE Transactions on Sustainable Energy, Vol. 9, No. 2, 831-842, 2018.
doi:10.1109/tste.2017.2762435        Google Scholar

8. Colbu, Ștefania-Cristiana, Daniel-Marian Bancila, and Dumitru Popescu, "Long-term power generation prediction in photovoltaics using machine learning-based models," Romanian Journal of Information Science and Technology (ROMJIST), Vol. 28, No. 1, 39-50, 2025.
doi:10.59277/ROMJIST.2025.1.04        Google Scholar

9. Rao, Zhi, Zaimin Yang, Jiaming Li, Lifeng Li, and Siyang Wan, "Prediction of photovoltaic power generation based on parallel bidirectional long short-term memory networks," Energy Reports, Vol. 12, 3620-3629, 2024.
doi:10.1016/j.egyr.2024.09.043        Google Scholar

10. Kumar, Anil, Yashwant Kashyap, and Rehan Nasar, "Enhancing high-frequency PV power forecast using optimal hyperparameter setting in LSTM," International Conference on Sustainable Power and Energy Research, 165-174, Warangal, India, 2024.
doi:10.1007/978-981-96-0824-9_15

11. Iheanetu, Kelachukwu J., "Solar photovoltaic power forecasting: A review," Sustainability, Vol. 14, No. 24, 17005, 2022.
doi:10.3390/su142417005        Google Scholar

12. Ait Abdelmoula, Ibtihal, Said Elhamaoui, Omaima Elalani, Abdellatif Ghennioui, and Mohamed El Aroussi, "A photovoltaic power prediction approach enhanced by feature engineering and stacked machine learning model," Energy Reports, Vol. 8, 1288-1300, 2022.
doi:10.1016/j.egyr.2022.07.082        Google Scholar

13. Xiao, Zenan, Xiaoqiao Huang, Jun Liu, Chengli Li, and Yonghang Tai, "A novel method based on time series ensemble model for hourly photovoltaic power prediction," Energy, Vol. 276, 127542, 2023.
doi:10.1016/j.energy.2023.127542        Google Scholar

14. Su, Zibo, Chaojun Shi, Ke Zhang, Xiongbin Xie, Xiaoyun Zhang, and Junchi Xiao, "TransFCloudNet: A dual-branch feature fusion ground-based cloud image fine-grained segmentation method for photovoltaic power prediction," Energy Conversion and Management, Vol. 348, 120647, 2026.
doi:10.1016/j.enconman.2025.120647        Google Scholar

15. Zhang, Ruoqi, Zishuo Xu, Shuangquan Liu, Kaixiang Fu, and Jie Zhang, "Prediction of ultra-short-term photovoltaic power using BiLSTM-informer based on secondary decomposition," Energies, Vol. 18, No. 6, 1485, 2025.
doi:10.3390/en18061485        Google Scholar

16. Fang, Xin, Shaohua Han, Juan Li, Jiaming Wang, Mingming Shi, Yunlong Jiang, Chenyu Zhang, and Jian Sun, "A FCM-XGBoost-GRU model for short-term photovoltaic power forecasting based on weather classification," 2023 5th Asia Energy and Electrical Engineering Symposium (AEEES), 1444-1449, Chengdu, China, Mar. 2023.
doi:10.1109/AEEES56888.2023.10114292

17. Yu, Zhongan, Faneng Wu, Long Chen, Siqi Zhu, and Junjie Zhang, "Photovoltaic power prediction model based on K-shape-NGO-CNN-BiLSTM with secondary decomposition," Progress In Electromagnetics Research C, Vol. 160, 183-195, 2025.
doi:10.2528/PIERC25081801        Google Scholar

18. Colominas, Marcelo A., Gastón Schlotthauer, and María E. Torres, "Improved complete ensemble EMD: A suitable tool for biomedical signal processing," Biomedical Signal Processing and Control, Vol. 14, 19-29, 2014.
doi:10.1016/j.bspc.2014.06.009        Google Scholar

19. Zheng, Jinde, Haiyang Pan, and Junsheng Cheng, "Rolling bearing fault detection and diagnosis based on composite multiscale fuzzy entropy and ensemble support vector machines," Mechanical Systems and Signal Processing, Vol. 85, 746-759, 2017.
doi:10.1016/j.ymssp.2016.09.010        Google Scholar

20. Mirjalili, Seyedali and Andrew Lewis, "The whale optimization algorithm," Advances in Engineering Software, Vol. 95, 51-67, 2016.
doi:10.1016/j.advengsoft.2016.01.008        Google Scholar

21. Han, Haotong, Jishen Peng, Jun Ma, Shang Lin Liu, and Hao Liu, "Research on load forecasting based on CEEMDAN SE VMD and SelfAttention TCN fusion model," Scientific Reports, Vol. 15, No. 1, 14530, 2025.
doi:10.1038/s41598-025-98224-4        Google Scholar

22. Agga, Ali, Ahmed Abbou, Moussa Labbadi, Yassine El Houm, and Imane Hammou Ou Ali, "CNN-LSTM: An efficient hybrid deep learning architecture for predicting short-term photovoltaic power production," Electric Power Systems Research, Vol. 208, 107908, 2022.
doi:10.1016/j.epsr.2022.107908        Google Scholar

23. Liang, Jianwei, Liying Yin, Yanli Xin, Sichao Li, Yuqian Zhao, and Tian Song, "Short-term photovoltaic power prediction based on CEEMDAN-PE and BiLSTM neural network," Electric Power Systems Research, Vol. 246, 111706, 2025.
doi:10.1016/j.epsr.2025.111706        Google Scholar