Vol. 166
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-02-09
Broadband Array Aperture Fill Time Correction Algorithm Based on Low-Complexity Variable Fractional Delay Filter
By
Progress In Electromagnetics Research C, Vol. 166, 9-18, 2026
Abstract
To address the aperture fill time problem in broadband arrays, this paper proposes an efficient delay compensation algorithm based on a variable fractional delay (VFD) filter with high numerical stability. A low-complexity Newton structure is introduced into the VFD Lagrange interpolation algorithm; in addition, the numerical stability is significantly enhanced by centrally offsetting the element delay parameters and avoiding the explicit inversion of the transformation matrix. Subsequently, the robust Newton-VFD is applied to the implementation of the broadband array aperture fill time correction algorithm. The algorithm utilizes a cascaded architecture consisting of coarse integer-delay compensation and fine fractional-delay correction via the Newton-VFD. Simulation results demonstrate that the proposed low-complexity Newton-VFD significantly reduces hardware complexity while maintaining excellent magnitude-frequency characteristics, which enables efficient and high-precision correction of broadband array aperture fill time.
Citation
Yufan Wang, Mingwei Shen, Zixuan Wang, and Guodong Han, "Broadband Array Aperture Fill Time Correction Algorithm Based on Low-Complexity Variable Fractional Delay Filter," Progress In Electromagnetics Research C, Vol. 166, 9-18, 2026.
doi:10.2528/PIERC25122502
References

1. Wang, Jun, Duo-Duo Cai, and Fan Yang, "Aperture effect influence and analysis of wideband phased array radar," Procedia Engineering, Vol. 29, 1298-1303, 2012.
doi:10.1016/j.proeng.2012.01.130        Google Scholar

2. Zhu, Xinguo and Kai Zhang, "A study on compensation of aperture fill time based on frequency-shifting," IET International Radar Conference 2013, C0239, 2013.
doi:10.1049/cp.2013.0221

3. Canese, L., G. C. Cardarilli, L. Di Nunzio, R. Fazzolari, D. Giardino, M. Re, and S. Spanò, "Efficient digital implementation of a multirate-based variable fractional delay filter for wideband beamforming," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 70, No. 6, 2231-2235, 2023.
doi:10.1109/tcsii.2023.3236066        Google Scholar

4. Tassart, S. and P. Depalle, "Analytical approximations of fractional delays: Lagrange interpolators and allpass filters," 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 1, 455-458, Munich, Germany, 1997.
doi:10.1109/ICASSP.1997.599673

5. Bakholdin, Nikita, Vladislav Chernienko, and Sergei Bakhurin, "Digital resampler based on farrow filter," 2025 27th International Conference on Digital Signal Processing and its Applications (DSPA), 1-7, Moscow, Russian Federation, 2025.
doi:10.1109/DSPA64310.2025.10977927

6. Huang, Yun-Da, Soo-Chang Pei, and Jong-Jy Shyu, "WLS design of variable fractional-delay FIR filters using coefficient relationship," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 56, No. 3, 220-224, 2009.
doi:10.1109/tcsii.2008.2011598        Google Scholar

7. Farrow, C. W., "A continuously variable digital delay element," IEEE International Symposium on Circuits and Systems, Vol. 3, 2641-2645, Espoo, Finland, 1988.
doi:10.1109/ISCAS.1988.15483

8. Duan, Huiping, Boon Poh Ng, Chong Meng Samson See, and Jun Fang, "Broadband beamforming using TDL-form IIR filters," IEEE Transactions on Signal Processing, Vol. 55, No. 3, 990-1002, 2007.
doi:10.1109/tsp.2006.887134        Google Scholar

9. Zhou, Wenjing, Min Xu, and Mingwei Shen, "A novel Variable Fractional delay filter design with sparsity within and across groups for wideband beamforming," Remote Sensing Letters, Vol. 16, No. 10, 1046-1056, 2025.
doi:10.1080/2150704x.2025.2532833        Google Scholar

10. Johansson, H. and O. Gustafsson, "Linear-phase FIR interpolation, decimation, and mth-band filters utilizing the Farrow structure," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 52, No. 10, 2197-2207, 2005.
doi:10.1109/tcsi.2005.853264        Google Scholar

11. Abbas, Muhammad, Oscar Gustafsson, and Håkan Johansson, "On the fixed-point implementation of fractional-delay filters based on the Farrow structure," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 60, No. 4, 926-937, 2013.
doi:10.1109/tcsi.2013.2244272        Google Scholar

12. Sandhya, G., Sreelekha K. R, and Bindiya T. S, "Design of low complexity arbitrary pass-band filter hardware using newton structure-based lagrange interpolators," 2022 IEEE 3rd Global Conference for Advancement in Technology (GCAT), 1-6, Bangalore, India, 2022.
doi:10.1109/GCAT55367.2022.9972130

13. Deng, Tian-Bo, "Coefficient-symmetries for implementing arbitrary-order Lagrange-type variable fractional-delay digital filters," IEEE Transactions on Signal Processing, Vol. 55, No. 8, 4078-4090, 2007.
doi:10.1109/tsp.2007.893967        Google Scholar

14. Lamb, D., L. F. O. Chamon, and V. H. Nascimento, "Efficient filtering structure for spline interpolation and decimation," Electronics Letters, Vol. 52, No. 1, 39-41, 2016.
doi:10.1049/el.2015.1957        Google Scholar

15. Deng, Tian-Bo, "Robust structure transformation for causal lagrange-type variable fractional-delay filters," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 56, No. 8, 1681-1688, 2009.
doi:10.1109/tcsi.2008.2008277        Google Scholar

16. Wang, Yuanzheng, Long Zhuang, and Yuekun Wang, "Influence of aperture fill time of wideband interference on anti-jamming method of multi-channel SAR," IET International Radar Conference (IRC 2023), 1022-1027, Chongqing, China, 2023.
doi:10.1049/icp.2024.1227

17. Zhou, Wenjing, Mingwei Shen, Di Wu, and Daiyin Zhu, "Efficient beam-scanning wideband sparse array synthesis with minimum element spacing control," Signal Processing, Vol. 238, 110194, 2026.
doi:10.1016/j.sigpro.2025.110194        Google Scholar