1. Society, A. C., "Cancer facts and figures 2019 @ONLINE,", [Online]. Available: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-andstatistics/annual-cancer-facts-and-figures/2019/cancer-facts-and-figures-2019.pdf, 2019.
doi:10.1109/TEMC.2019.2896519 Google Scholar
2. Attaran, A., W. B. Handler, and B. A. Chronik, "2 mm radius loop antenna and linear active balun for near field measurement of magnetic field in MRI-conditional testing of medical devices," IEEE Transactions on Electromagnetic Compatibility, 1-8, 2019.
doi:10.1109/ICEAA.2017.8065655 Google Scholar
3. Radder, J., M. Woo, P. Van de Moortele, G. Metzger, A. Ertürk, J. Strupp, K. Ugurbil, and G. Adriany, "Optimization and simulation of a 16-channel loop and dipole array for head MRI applications at 10.5 tesla," 2017 International Conference on Electromagnetics in Advanced Applications (ICEAA), 1828-1831, Sep. 2017.
doi:10.3390/s17071572 Google Scholar
4. Wang, L., "Early diagnosis of breast cancer," Sensors, Vol. 17, No. 7, 1572, 2017.
doi:10.1049/iet-map.2017.0599 Google Scholar
5. Obermeier, R. and J. A. Martinez-Lorenzo, "Compressive sensing unmixing algorithm for breast cancer detection," IET Microwaves, Antennas & Propagation, Vol. 12, No. 4, 533-541, 2018.
doi:10.1109/TBME.2018.2807799 Google Scholar
6. Yousefnia, M., A. Ebrahimzadeh, M. Dehmollaian, and A. Madannejad, "A time-reversal imaging system for breast screening: Theory and initial phantom results," IEEE Transactions on Biomedical Engineering, Vol. 65, No. 11, 2542-2551, 2018.
doi:10.1007/978-3-319-27866-7 Google Scholar
7. Conceição, R. C., J. J. Mohr, and M. O'Halloran, An Introduction to Microwave Imaging for Breast Cancer Detection, Springer, 2016.
doi:10.1109/6668.990683
8. Fear, E. C., S. C. Hagness, P. M. Meaney, M. Okoniewski, and M. A. Stuchly, "Enhancing breast tumor detection with near-field imaging," IEEE Microwave magazine, Vol. 3, No. 1, 48-56, 2002.
doi:10.1109/22.883861 Google Scholar
9. Meaney, P. M., M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, "A clinical prototype for active microwave imaging of the breast," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 11, 1841-1853, 2000.
doi:10.1163/156939304774113089 Google Scholar
10. Caorsi, S., M. Donelli, A. Lommi, and A. Massa, "Location and imaging of two-dimensional scatterers by using a particle swarm algorithm," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 4, 481-494, 2004.
doi:10.2528/PIERM11040903 Google Scholar
11. Donelli, M., I. J. Craddock, D. Gibbins, and M. Sarafianou, "A three-dimensional time domain microwave imaging method for breast cancer detection based on an evolutionary algorithm," Progress In Electromagnetics Research, Vol. 18, 179-195, 2011.
doi:10.4218/etrij.10.0109.0626 Google Scholar
12. Son, S.-H., N. Simonov, H.-J. Kim, J.-M. Lee, and S.-I. Jeon, "Preclinical prototype development of a microwave tomography system for breast cancer detection," ETRI Journal, Vol. 32, No. 6, 901-910, 2010. Google Scholar
13. Bridges, J. E., "Non-invasive system for breast cancer detection,", US Patent 5,704, 355, Jan. 6, 1998.
doi:10.1109/TBME.2002.800759 Google Scholar
14. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Transactions on Biomedical Engineering, Vol. 49, No. 8, 812-822, 2002.
doi:10.2528/PIERM11061206 Google Scholar
15. Donelli, M., "A rescue radar system for the detection of victims trapped under rubble based on the independent component analysis algorithm," Progress In Electromagnetics Research, Vol. 19, 173-181, 2011.
doi:10.3390/s18020655 Google Scholar
16. Wang, L., "Microwave sensors for breast cancer detection," Sensors, Vol. 18, No. 2, 655, 2018. Google Scholar
17. Klemm, M., I. Craddock, J. Leendertz, A. Preece, and R. Benjamin, "Experimental and clinical results of breast cancer detection using uwb microwave radar," Antennas and Propagation Society International Symposium, 2008. AP-S 2008. IEEE, 1-4, 2008.
doi:10.1109/RBME.2011.2169780 Google Scholar
18. Hassan, A. M. and M. El-Shenawee, "Review of electromagnetic techniques for breast cancer detection," IEEE Reviews in Biomedical Engineering, Vol. 4, 103-118, 2011.
doi:10.1038/s41598-018-31046-9 Google Scholar
19. Aldhaeebi, M. A., T. S. Almoneef, A. Ali, Z. Ren, and O. M. Ramahi, "Near field breast tumor detection using ultra-narrow band probe with machine learning techniques," Scientific Reports, Vol. 8, No. 1, 12607, 2018. Google Scholar
20. Bourqui, J., J. M. Sill, and E. C. Fear, "A prototype system for measuring microwave frequency reflections from the breast," Journal of Biomedical Imaging, Vol. 2012, 9, 2012. Google Scholar
21. Gazhonova, V., 3D Automated Breast Volume Sonography: A Practical Guide, Springer, 2016.
doi:10.1016/j.mri.2012.10.022
22. Chen, J.-H., S. Chan, D.-C. Yeh, P. T. Fwu, M. Lin, and M.-Y. Su, "Response of bilateral breasts to the endogenous hormonal uctuation in a menstrual cycle evaluated using 3d mri," Magnetic Resonance Imaging, Vol. 31, No. 4, 538-544, 2013. Google Scholar
23. CST "Computer simulation technology. cst computer simulation technology ag@ONLINE,", [Online]. Available: http://www.CST.com, Sep. 2017. Google Scholar
24. UWCEM "Breast phantom repository@ONLINE,", [Online]. Available: http://uwcem.ece.wisc.edu/phantomRepository.html, Aug. 2017. Google Scholar
25. Zastrow, E., S. Davis, M. Lazebnik, F. Kelcz, B. van Veem, and S. Hagness, "Database of 3D grid-based numerical breast phantoms for use in computational electromagnetics simulations,", [Online]. Available: https://uwcem.ece.wisc.edu/MRIdatabase/InstructionManual.pdf, 2008.
doi:10.1109/TBME.2008.2002130 Google Scholar
26. Zastrow, E., S. K. Davis, M. Lazebnik, F. Kelcz, B. D. Van Veen, and S. C. Hagness, "Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modeling microwave interactions with the human breast," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 12, 2792-2800, 2008.
doi:10.1088/0031-9155/52/20/002 Google Scholar
27. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, T. M. Breslin, et al. "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Physics in Medicine and Biology, Vol. 52, No. 20, 6093, 2007. Google Scholar
28. Richardson, M., "Principal component analysis,", URL: http://people.maths.ox.ac.uk/richardsonm/SignalProcPCA.pdf (last access: 3.5. 2013), Aleš Hladnik Dr., Ass. Prof., Chair of Information and Graphic Arts Technology, Faculty of Natural Sciences and Engineering, University of Ljubljana, Slovenia, ales.hladnik@ntf. uni-lj.si, 2009.
doi:10.1002/wics.101 Google Scholar
29. Abdi, H. and L. J. Williams, "Principal component analysis," Wiley Interdisciplinary Reviews: Computational Statistics, Vol. 2, No. 4, 433-459, 2010.
doi:10.1098/rsta.2015.0202 Google Scholar
30. Jolliffe, I. T. and J. Cadima, "Principal component analysis: A review and recent developments," Phil. Trans. R. Soc. A, Vol. 374, No. 2065, 20150202, 2016. Google Scholar