Vol. 88
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-01-06
Oversized Circular Corrugated Waveguides Operated at 42 GHz for ECRH Application
By
Progress In Electromagnetics Research M, Vol. 88, 73-82, 2020
Abstract
The design, analysis, and manufacturing of an oversized circular metallic corrugated waveguide with rectangular and square grooves for transmitting power from gyrotron to tokamak or dummy load have been carried out. To carry high power at millimeter wave with lower transmission loss, a corrugated waveguide is preferred. A corrugated waveguide with HE11 mode gives lower attenuation than a smooth circular waveguide with TE11 mode. The theory behind the depth and width selection of corrugations required to carry the linearly polarized (HE11) mode is explained in this paper. The proposed structures are designed and simulated in CST microwave studio software. Rectangular and square groove circular corrugated waveguides each having a length of 500\,mm were fabricated and tested using ZVA50 vector network analyzer. Based on the performance results, it is derived that the square groove corrugated waveguide gives lower insertion loss of 0.08 dB/meter than rectangular groove corrugated waveguide which gives insertion loss of 0.11 dB/meter.
Citation
Amit Patel, Pujita Bhatt, Keyur Mahant, Alpesh D. Vala, Krishnamachari Sathyanarayan, Sanjay V. Kulkarni, and Dharmesh Rathi, "Oversized Circular Corrugated Waveguides Operated at 42 GHz for ECRH Application," Progress In Electromagnetics Research M, Vol. 88, 73-82, 2020.
doi:10.2528/PIERM19102302
References

1. Singha, U., N. Kumara, H. Khatuna, N. Kumara, V. Yadava, A. Kumara, M. Sharmaa, M. Alariaa, A. Beraa, P. K. Jain, and A. K. Sinhaa, "Design of 42GHz gyrotron for Indian fusion tokamak system," Fusion Engineering and Design, Vol. 88, No. 11, 2898-2906, November 2013.
doi:10.1016/j.fusengdes.2013.06.001

2. Doane, J. L. and C. P. Moeller, "HE11 mitre bends and gaps in a circular corrugated waveguide," International Journal of Electronics, Vol. 77, No. 4, 489-509, 1994.
doi:10.1080/00207219408926081

3. Kowalski, E. J., "Miter bend loss and higher order mode content measurements in overmoded millimeter-wave transmission lines,", Ph.D. diss., Massachusetts Institute of Technology, 2010.

4. Doane, J. L., "Mode converters for generating the HE11 (Gaussian-like) mode from TE01 in a circular waveguide," International Journal of Electronics Theoretical and Experimental, Vol. 53, No. 6, 573-585, 1985.
doi:10.1080/00207218208901551

5. Doane, J. L., "Design of circular corrugated waveguides to transmit millimeter waves at ITER," Fusion Science and Technology, Vol. 53, No. 1, 159-173, 2008.
doi:10.13182/FST08-A1662

6. Kiran, D. V., D. S. Narayanan, V. K. Killamsetty, and B. Mukherjee, "Photonic waveguide inspired corrugated cross-coupled notch DRA," Electromagnetics, Vol. 38, No. 7, 458-468, 2018.
doi:10.1080/02726343.2018.1519160

7. Clarricoats, P. J. B. and P. K. Saha, "Attenuation in corrugated circular waveguide," Electronics Letters, Vol. 6, No. 12, 370-372, 1970.
doi:10.1049/el:19700260

8. Clarricoats, P. J. and A. D. Olver, "Low attenuation in corrugated circular waveguides," Electronics Letters, Vol. 9, No. 16, 376-377, 1973.
doi:10.1049/el:19730278

9. Clarricoats, P. J. B. and P. K. Saha, "Propagation and radiation behaviour of corrugated feeds Part I — Corrugated waveguide feed," Proceedings of the Institution of Electrical Engineers, Vol. 118, No. 9, 1167-1176, September 1971.
doi:10.1049/piee.1971.0211

10. Vallinas, J. T., "Modern corrugated horn antennas,", Ph.D. Thesis, Universidad P´ublica de Navarra, Pamplona, 2003.

11. Doane, J. L., "Propagation and mode coupling in corrugated and smooth-wall circular wavguides," Journal of Infrared and Millimeter Wave, Vol. 13, 123-170, 1985.

12. Thumm, M., "Design of short high-power TE11-HE11 mode converters in highly overmoded corrugated waveguides," IEEE Transactions on Microwave Theory and Techniques, Vol. 39, 301-309, February 1991.
doi:10.1109/22.102974

13. Olver, A. D., "Corrugated horns," Journal of Electronics and Communication, Vol. 1, No. 4, 4-10, February 1992.

14. Doane, J. L., Overmoded Waveguide Components for the ECH System on PDX, No. PPPL-2071, Plasma Physics Lab, Princeton Univ., NJ, USA, 1984.

15. Nanni, E. A., S. K. Jawla, M. A. Shapiro, P. P. Woskov, and R. J. Temkin, "Low-loss transmission lines for high-power terahertz radiation," Journal of Infrared, Millimeter and Terahertz Waves, Vol. 33, No. 7, 695-714, July 2012.
doi:10.1007/s10762-012-9870-5

16. Fiedziuszko, S. J. and G. A. Fiedziuszko, "Flexible waveguide with rounded corrugations,", U.S. Patent 6,559,742, issued May 6, 2003.

17. Patel, A., R. Goswami, K. Mahant, P. Bhatt, H. Mewada, A. Vala, K. Sathyanarayan, and S. Kulkarni, "Millimeter-wave TE01-TE11-HE11 mode converter using overmoded circular waveguide," Journal of Electromagnetic Wave and Applications, Vol. 32, No. 14, 2018.
doi:10.1080/09205071.2018.1468286

18. Patel, A., R. Goswami, and P. Bhatt, "TM11 to HE11 mode converter in overmoded circular corrugated waveguide," IET Antenna and Microwave Propagation, Vol. 3, No. 8, 1202-1207, 2019.
doi:10.1049/iet-map.2018.5627

19. Sathyanarayana, K., S. V. Kulkarni, A. Patel, P. Bhatt, A. Vala, H. Mewada, and K. Mahant, "Sensitivity analysis on predicted microwave performance of mode converters with geometrical tolerances for 42-GHz transmission line components," Fusion Science and Technology, Vol. 75, No. 3, 234-243, 2019.
doi:10.1080/15361055.2018.1557984