1. Hagness, S. C., A. Taflove, and J. E. Bridges, "Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antenna-array sensors," IEEE Trans. Biomed. Eng., Vol. 45, No. 12, 1470-1479, 1998.
doi:10.1109/10.730440 Google Scholar
2. Moosazadeh, M., S. Kharkovsky, J. T. Case, and B. Samali, "UWB antipodal Vivaldi antenna for microwave imaging of construction materials and structures," Microwave and Optical Technology Letters, Vol. 59, No. 6, 1259-1264, 2017.
doi:10.1002/mop.30509 Google Scholar
3. Moosazadeh, M., S. Kharkovsky, Z. Esmati, and B. Samali, "UWB elliptically-tapered antipodal Vivaldi antenna for microwave imaging applications," IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), 102-105, 2016.
doi:10.1109/APWC.2016.7738131 Google Scholar
4. Winters, D. W., J. D. Shea, P. Kosmas, B. D. Van Veen, and S. C. Hagness, "Three-dimensional microwave breast imaging: Dispersive dielectric properties estimation using patient-specific basis functions," IEEE Trans. Med. Imag., Vol. 28, No. 7, 969-981, 2009.
doi:10.1109/TMI.2008.2008959 Google Scholar
5. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, and T. M. Breslin, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, 6093-6115, 2007.
doi:10.1088/0031-9155/52/20/002 Google Scholar
6. Li, X. and S. C. Hagness, "A confocal microwave imaging algorithm for breast cancer detection," IEEE Microw. Wireless Compon. Lett., Vol. 11, No. 3, 130-132, 2001.
doi:10.1109/7260.915627 Google Scholar
7. Lim, H. B., N. T. T. Nhung, E. P. Li, and N. D. Thang, "Confocal microwave imaging for breast cancer detection: Delay-multiply-and-sum image reconstruction algorithm," IEEE Trans. Biomed. Eng., Vol. 55, No. 6, 1697-1704, 2008.
doi:10.1109/TBME.2008.919716 Google Scholar
8. Yang, F. and A. S. Mohan, "Breast cancer detection: Comparison of data-dependent and data-independent approaches," 2010 Asia-Pacific Microwave Conference Proceedings (APMC), 271-274, IEEE, 2010. Google Scholar
9. Byrne, D., M. O'Halloran, M. Glavin, and E. Jones, "Data independent radar beamforming algorithms for breast cancer detection," Progress In Electromagnetics Research, Vol. 107, 331-348, 2010.
doi:10.2528/PIER10061001 Google Scholar
10. Xie, Y., B. Guo, L. Xu, J. Li, and P. Stoica, "Multistatic adaptive microwave imaging for early breast cancer detection," IEEE Trans. Biomed. Eng., Vol. 53, No. 8, 1647-1657, 2006.
doi:10.1109/TBME.2006.878058 Google Scholar
11. Li, J., P. Stoica, and Z.Wang, "On robust Capon beamforming and diagonal loading," IEEE Trans. Signal Proc., Vol. 51, No. 7, 1702-1715, 2003.
doi:10.1109/TSP.2003.812831 Google Scholar
12. Nilavalan, R., A. Gbedemah, I. Craddock, X. Li, and S. C. Hagness, "Numerical investigation of breast tumour detection using multi-static radar," Electron. Lett., Vol. 39, 1787-1789, 2003.
doi:10.1049/el:20031183 Google Scholar
13. Bond, E. J., X. Li, S. C. Hagness, and B. D. Van Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Trans. Antennas Propag., Vol. 51, No. 8, 1690-1705, 2003.
doi:10.1109/TAP.2003.815446 Google Scholar
14. Lim, H. B., N. T. T. Nhung, E. P. Li, and N. D. Thang, "Confocal microwave imaging for breast cancer detection: Delay-multiply-and-sum image reconstruction algorithm," IEEE Trans. Biomed. Eng., Vol. 55, No. 6, 1697-1704, 2008.
doi:10.1109/TBME.2008.919716 Google Scholar
15. Klemm, M., J. Leendertz, D. Gibbins, I. Craddock, A. Preece, and R. Benjamin, "Microwave radar-based breast cancer detection: Imaging in inhomogeneous breast phantoms," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1349-1352, 2009.
doi:10.1109/LAWP.2009.2036748 Google Scholar
16. O'Halloran, M., M. Glavin, and E. Jones, "Channel-ranked beamformer for the early detection of breast cancer," Progress In Electromagnetics Research, Vol. 103, 153-168, 2010.
doi:10.2528/PIER10030902 Google Scholar
17. Porter, E., J. Fakhoury, R. Oprisor, M. Coates, and M. Popovic, "Improved tissue phantoms for experimental validation of microwave breast cancer detection," Proc. of the Fourth European Conf. on Antennas and Propagation, 1-5, Barcelona, Spain, 2010. Google Scholar
18. Hollman, K., K. Rigby, and M. O'Donnell, "Coherence factor of speckle from a multi-row probe," Proc. IEEE Ultrasonic Symp., 1257-1260, Caesars, Tahoe, NV, 1999. Google Scholar
19. Wang, S. L., C. H. Chang, H. C. Yang, Y. H. Chou, and P. C. Li, "Performance evaluation of coherence-based adaptive imaging using clinical breast data," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 54, No. 8, 1669-1679, 2007.
doi:10.1109/TUFFC.2007.438 Google Scholar
20. Campbell, A. and D. Land, "Dielectric properties of female human breast tissue measured in vitro at 3.2 GHz," Phys. Med. Biol., Vol. 37, No. 1, 193, 2000.
doi:10.1088/0031-9155/37/1/014 Google Scholar
21. Zastrow, E., S. K. Davis, M. Lazebnik, F. Kelcz, B. D. Van Veen, and S. C. Hagness, "Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modeling microwave interactions with the human breast," IEEE Trans. Biomed. Eng., Vol. 55, No. 12, 2792-2800, 2008.
doi:10.1109/TBME.2008.2002130 Google Scholar
22. Leendertz, J., A. Preece, R. Nilavalan, I. Craddock, and R. Benjamin, "A liquid phantom medium for microwave breast imaging," 6th International Congress of the European Bioelectromagnetics Association, Budapest, Hungary, 2003. Google Scholar
23. Sill, J. M. and E. C. Fear, "Tissue sensing adaptive radar for breast cancer detection-experimental investigation of simple tumor models," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 11, 3312-3319, 2005.
doi:10.1109/TMTT.2005.857330 Google Scholar
24. Zanoon, T. and M. Abdullah, "Early stage breast cancer detection by means of time-domain ultra-wide band sensing," Meas. Sci. Technol., Vol. 22, 114016, 2011.
doi:10.1088/0957-0233/22/11/114016 Google Scholar
25. Hahn, C. and S. Noghanian, "Heterogeneous breast phantom development for microwave imaging using regression models," Journal Biomed. Imag., Vol. 2012, 6, 2012. Google Scholar
26. Lazebnik, M., E. L. Madsen, G. R. Frank, and S. C. Hagness, "Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications," Phys. Med. Biol., Vol. 50, 4245-4258, 2005.
doi:10.1088/0031-9155/50/18/001 Google Scholar
27. Zanoon, T. F., M. S. Hathal, and M. Abdullah, "Microwave imaging at resolution and super-resolution with ultra-wide band sensors," 2012 IEEE Int. Conf. Imaging Systems and Techniques (IST), 538-543, IEEE, 2012.
doi:10.1109/IST.2012.6295578 Google Scholar