Vol. 100
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-01-18
Ultra-Wideband Featuring Enhanced Delay and Sum Algorithm and Oriented for Detecting Early Stage Breast Cancer
By
Progress In Electromagnetics Research M, Vol. 100, 141-150, 2021
Abstract
In this study, we present the experimental results of ultra-wideband (UWB) imaging oriented for detecting small malignant breast tumors at an early stage. The technique is based on radar sensing, whereby tissues are differentiated based on the dielectric contrast between the disease and its surrounding healthy tissues. The image reconstruction algorithm referred to herein as the enhanced version of delay and sum (EDAS) algorithm is used to identify the malignant tissue in a cluttered environment and noisy data. The methods and procedures are tested using MRI-derived breast phantoms, and the results are compared with images obtained from classical DAS variant. Incorporating a new filtering technique and multiplication procedure, the proposed algorithm is effective in reducing the clutter and producing better images. Overall, the methods and procedures registered a signal-to-clutter ratio (SCR) value of 1.54 dB when imaging the most challenging example involving the heterogeneously dense model in 8-antenna geometry. The SCR is slightly increased to 3.12 dB when the number of sensors is increased to 16.
Citation
Mohammed Sadoon Hathal, Suhair S. Salih, and Alaa H. Hasan, "Ultra-Wideband Featuring Enhanced Delay and Sum Algorithm and Oriented for Detecting Early Stage Breast Cancer," Progress In Electromagnetics Research M, Vol. 100, 141-150, 2021.
doi:10.2528/PIERM20012804
References

1. Hagness, S. C., A. Taflove, and J. E. Bridges, "Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antenna-array sensors," IEEE Trans. Biomed. Eng., Vol. 45, No. 12, 1470-1479, 1998.
doi:10.1109/10.730440        Google Scholar

2. Moosazadeh, M., S. Kharkovsky, J. T. Case, and B. Samali, "UWB antipodal Vivaldi antenna for microwave imaging of construction materials and structures," Microwave and Optical Technology Letters, Vol. 59, No. 6, 1259-1264, 2017.
doi:10.1002/mop.30509        Google Scholar

3. Moosazadeh, M., S. Kharkovsky, Z. Esmati, and B. Samali, "UWB elliptically-tapered antipodal Vivaldi antenna for microwave imaging applications," IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), 102-105, 2016.
doi:10.1109/APWC.2016.7738131        Google Scholar

4. Winters, D. W., J. D. Shea, P. Kosmas, B. D. Van Veen, and S. C. Hagness, "Three-dimensional microwave breast imaging: Dispersive dielectric properties estimation using patient-specific basis functions," IEEE Trans. Med. Imag., Vol. 28, No. 7, 969-981, 2009.
doi:10.1109/TMI.2008.2008959        Google Scholar

5. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, and T. M. Breslin, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, 6093-6115, 2007.
doi:10.1088/0031-9155/52/20/002        Google Scholar

6. Li, X. and S. C. Hagness, "A confocal microwave imaging algorithm for breast cancer detection," IEEE Microw. Wireless Compon. Lett., Vol. 11, No. 3, 130-132, 2001.
doi:10.1109/7260.915627        Google Scholar

7. Lim, H. B., N. T. T. Nhung, E. P. Li, and N. D. Thang, "Confocal microwave imaging for breast cancer detection: Delay-multiply-and-sum image reconstruction algorithm," IEEE Trans. Biomed. Eng., Vol. 55, No. 6, 1697-1704, 2008.
doi:10.1109/TBME.2008.919716        Google Scholar

8. Yang, F. and A. S. Mohan, "Breast cancer detection: Comparison of data-dependent and data-independent approaches," 2010 Asia-Pacific Microwave Conference Proceedings (APMC), 271-274, IEEE, 2010.        Google Scholar

9. Byrne, D., M. O'Halloran, M. Glavin, and E. Jones, "Data independent radar beamforming algorithms for breast cancer detection," Progress In Electromagnetics Research, Vol. 107, 331-348, 2010.
doi:10.2528/PIER10061001        Google Scholar

10. Xie, Y., B. Guo, L. Xu, J. Li, and P. Stoica, "Multistatic adaptive microwave imaging for early breast cancer detection," IEEE Trans. Biomed. Eng., Vol. 53, No. 8, 1647-1657, 2006.
doi:10.1109/TBME.2006.878058        Google Scholar

11. Li, J., P. Stoica, and Z.Wang, "On robust Capon beamforming and diagonal loading," IEEE Trans. Signal Proc., Vol. 51, No. 7, 1702-1715, 2003.
doi:10.1109/TSP.2003.812831        Google Scholar

12. Nilavalan, R., A. Gbedemah, I. Craddock, X. Li, and S. C. Hagness, "Numerical investigation of breast tumour detection using multi-static radar," Electron. Lett., Vol. 39, 1787-1789, 2003.
doi:10.1049/el:20031183        Google Scholar

13. Bond, E. J., X. Li, S. C. Hagness, and B. D. Van Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Trans. Antennas Propag., Vol. 51, No. 8, 1690-1705, 2003.
doi:10.1109/TAP.2003.815446        Google Scholar

14. Lim, H. B., N. T. T. Nhung, E. P. Li, and N. D. Thang, "Confocal microwave imaging for breast cancer detection: Delay-multiply-and-sum image reconstruction algorithm," IEEE Trans. Biomed. Eng., Vol. 55, No. 6, 1697-1704, 2008.
doi:10.1109/TBME.2008.919716        Google Scholar

15. Klemm, M., J. Leendertz, D. Gibbins, I. Craddock, A. Preece, and R. Benjamin, "Microwave radar-based breast cancer detection: Imaging in inhomogeneous breast phantoms," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1349-1352, 2009.
doi:10.1109/LAWP.2009.2036748        Google Scholar

16. O'Halloran, M., M. Glavin, and E. Jones, "Channel-ranked beamformer for the early detection of breast cancer," Progress In Electromagnetics Research, Vol. 103, 153-168, 2010.
doi:10.2528/PIER10030902        Google Scholar

17. Porter, E., J. Fakhoury, R. Oprisor, M. Coates, and M. Popovic, "Improved tissue phantoms for experimental validation of microwave breast cancer detection," Proc. of the Fourth European Conf. on Antennas and Propagation, 1-5, Barcelona, Spain, 2010.        Google Scholar

18. Hollman, K., K. Rigby, and M. O'Donnell, "Coherence factor of speckle from a multi-row probe," Proc. IEEE Ultrasonic Symp., 1257-1260, Caesars, Tahoe, NV, 1999.        Google Scholar

19. Wang, S. L., C. H. Chang, H. C. Yang, Y. H. Chou, and P. C. Li, "Performance evaluation of coherence-based adaptive imaging using clinical breast data," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 54, No. 8, 1669-1679, 2007.
doi:10.1109/TUFFC.2007.438        Google Scholar

20. Campbell, A. and D. Land, "Dielectric properties of female human breast tissue measured in vitro at 3.2 GHz," Phys. Med. Biol., Vol. 37, No. 1, 193, 2000.
doi:10.1088/0031-9155/37/1/014        Google Scholar

21. Zastrow, E., S. K. Davis, M. Lazebnik, F. Kelcz, B. D. Van Veen, and S. C. Hagness, "Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modeling microwave interactions with the human breast," IEEE Trans. Biomed. Eng., Vol. 55, No. 12, 2792-2800, 2008.
doi:10.1109/TBME.2008.2002130        Google Scholar

22. Leendertz, J., A. Preece, R. Nilavalan, I. Craddock, and R. Benjamin, "A liquid phantom medium for microwave breast imaging," 6th International Congress of the European Bioelectromagnetics Association, Budapest, Hungary, 2003.        Google Scholar

23. Sill, J. M. and E. C. Fear, "Tissue sensing adaptive radar for breast cancer detection-experimental investigation of simple tumor models," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 11, 3312-3319, 2005.
doi:10.1109/TMTT.2005.857330        Google Scholar

24. Zanoon, T. and M. Abdullah, "Early stage breast cancer detection by means of time-domain ultra-wide band sensing," Meas. Sci. Technol., Vol. 22, 114016, 2011.
doi:10.1088/0957-0233/22/11/114016        Google Scholar

25. Hahn, C. and S. Noghanian, "Heterogeneous breast phantom development for microwave imaging using regression models," Journal Biomed. Imag., Vol. 2012, 6, 2012.        Google Scholar

26. Lazebnik, M., E. L. Madsen, G. R. Frank, and S. C. Hagness, "Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications," Phys. Med. Biol., Vol. 50, 4245-4258, 2005.
doi:10.1088/0031-9155/50/18/001        Google Scholar

27. Zanoon, T. F., M. S. Hathal, and M. Abdullah, "Microwave imaging at resolution and super-resolution with ultra-wide band sensors," 2012 IEEE Int. Conf. Imaging Systems and Techniques (IST), 538-543, IEEE, 2012.
doi:10.1109/IST.2012.6295578        Google Scholar