1. Belhadj-Tahar, N. and A. Fourrier-Lamer, "Broad-band analysis of discontinuity used for dielectric measurement," IEEE MTT, Vol. 34, 346-349, 1986.
doi:10.1109/TMTT.1986.1133342 Google Scholar
2. Hornik, K., M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators," Neural Networks, Vol. 2, 359-366, 1989.
doi:10.1016/0893-6080(89)90020-8 Google Scholar
3. Yildiz, B. and M. Turkmen, "Quasi-static models based on artificial neural networks for calculating the characteristic parameters of multilayer cylindrical coplanar waveguide and strip line," Progress In Electromagnetics Research B, Vol. 3, 1-22, 2008.
doi:10.2528/PIERB07112806 Google Scholar
4. Zainud-Deen, S. H., H. A. Malhat, K. H. Awadalla, and E. S. El-Hadad, "Direction of arrival and state of polarization estimation using radial basis function neural network (RBFNN)," Progress In Electromagnetics Research B, Vol. 2, 137-150, 2008.
doi:10.2528/PIERB07111801 Google Scholar
5. Guney, K., C. Yildiz, S. Kaya, and M. Turkmen, "Artificial neural networks for calculating the characteristic impedance of airsuspended trapezoidal and rectangular-shaped microshield lines," J. of Electromagn. Waves and Appl., Vol. 20, No. 9, 1161-1174, 2006.
doi:10.1163/156939306777442917 Google Scholar
6. Ayestar’an, R. G. and F. Las-Heras, "Near field to far field transformation using neural networks and source reconstruction," J. of Electromagn. Waves and Appl., Vol. 20, No. 15, 2201-2213, 2006.
doi:10.1163/156939306779322594 Google Scholar
7. Acikgoz, H., Y. Le Bihan, O. Meyer, and L. Pichon, "Neural networks for broad-band evaluation of complex permittivity using a coaxial discontinuity," Eur. Phys. J. Appl. Phys., Vol. 39, 197-201, 2007.
doi:10.1051/epjap:2007073 Google Scholar
8. Sarle, W. S., "Neural Network FAQ, Part 2 of 7: Learning, periodic posting to the Usenet newsgroup comp.ai.neural-nets,", Available by ftp://ftp.sas.com/pub/Neural/FAQ.html. Google Scholar
9. MacKay, D. J. C., "Bayesian methods for adaptive models,", Thesis of California Institute of Technology, 1992. Google Scholar
10. Bartley, P. G., R. W. McClendon, and S. O. Nelson, "Permittivity determination by using an artificial neural network," IEEE Instrum. and Meas. Tech. Conference, 27-30, 1999. Google Scholar
11. Tuck, D. and S. Coad, "Neurocomputed model of open-circuited coaxial probes," IEEE Microwave Guided Lett., Vol. 5, 105-107, 1995.
doi:10.1109/75.372806 Google Scholar
12. Meyer, O., "Instrumentation pour un controle de processus de reticulation sous micro-ondes par caracterisation large bande,", Thesis of the University Pierre et Marie Curie, 1996. Google Scholar
13. Belhadj-Tahar, N. E., A. Fourrier-Lamer, and H. De Chanterac, "Broad-band simultaneous measurement of complex permittivity and permeability using a coaxial discontinuity," IEEE Transactions on Microwave Theory and Techniques, Vol. 38, No. 1, January 1990.
doi:10.1109/22.44149 Google Scholar
14. Courtois, S. and R. Phan-Tan-Luu, "Neural networks applied to the choice of an experimental design," EDP Sciences, Vol. 26, 304-310, Wiley-VCH, 1998. Google Scholar
15. Sarle, W. S., "Neural Network FAQ, Part 3 of 7: Generalization, periodic posting to the Usenet newsgroup comp.ai.neural-nets,", Available by ftp://ftp.sas.com/pub/Neural/FAQ.html. Google Scholar
16. Foresee, F. D. and M. T. Hagan, "Gauss-Newton approximation to Bayesian learning," IEEE Trans. Neural Networks, Vol. 3, 1930-1935, 1997. Google Scholar