Vol. 6
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-03-23
Reconstruction Permittivity Tensor and Principal Axis for Uniaxial Medium in Microwave Band
By
Progress In Electromagnetics Research M, Vol. 6, 107-122, 2009
Abstract
The relationship of permittivity tensor of anisotropic medium in principal coordinate system and laboratory coordinate system is given. The characteristic of permittivity tensor of uniaxial anisotropic medium in the laboratory coordinate system is discussed. The transverse permittivity of an anisotropic plate are reconstructed in laboratory coordinate system based on the resonance and polarization characteristics of back scattering radar cross section (RCS) in wide band. Then, a new scheme of reconstructing the principal axis direction for a uniaxial sample plate is proposed, subject to the principal axis is unknown. The back scattering characteristics of a sample plate are discussed when the electromagnetic (EM) wave of different polarization is incident perpendicularity to the sample plate. Three sample plates, which are cut perpendicularly to the x', y', and z' axis in the laboratory coordinate system, are required. A numerical reconstruction example is given to demonstrate the availability of presented scheme.
Citation
Bing Wei Fei Wang De-Biao Ge , "Reconstruction Permittivity Tensor and Principal Axis for Uniaxial Medium in Microwave Band," Progress In Electromagnetics Research M, Vol. 6, 107-122, 2009.
doi:10.2528/PIERM09021306
http://www.jpier.org/PIERM/pier.php?paper=09021306
References

1. Wang, M.Y., J. Xu, J. Wu, B. Wei, H.-L. Li, T. Xu, and D.-B. Ge, "FDTD study on wave propagation in layered structures with biaxial anisotropic metamaterials," Progress In Electromagnetics Research, Vol. 81, 253-265, 2008.
doi:10.2528/PIER07122602

2. Liu, S.-H., C.-H. Liang, W. Ding, L. Chen, and W.-T. Pan, "Electromagnetic wave propagation through a slab waveguide of uniaxially anisotropic dispersive metamaterial," Progress In Electromagnetics Research, Vol. 76, 467-475, 2007.
doi:10.2528/PIER07071905

3. Ding, W., L. Chen, and C.-H. Liang, "Characteristics of electromagnetic wave propagation in biaxial anisotropic left-handed materials," Progress In Electromagnetics Research, Vol. 70, 37-52, 2007.
doi:10.2528/PIER07011001

4. Gong, Z. and G. Q. Zhu, "FDTD analysis of an anisotropically coated missile," Progress In Electromagnetics Research, Vol. 64, 69-80, 2006.
doi:10.2528/PIER06071301

5. Kristensson, G., S. Poulsen, and S. Rikte, "Propagators and scattering of electromagnetic waves in planar bianisotropic slabs --- An application to frequency selective structures," Progress In Electromagnetics Research, Vol. 48, 1-25, 2004.
doi:10.2528/PIER04031503

6. Bass, F. and L. Resnick, "The electromagnetic-wave propagation through a stratified inhomogeneous anisotropic medium," Progress In Electromagnetics Research, Vol. 48, 67-83, 2004.
doi:10.2528/PIER03122302

7. Zheng, L. G. and W. X. Zhang, "Analysis of bi-anisotropic Pbg structure using plane wave expansion method," Progress In Electromagnetics Research, Vol. 42, 233-246, 2003.
doi:10.2528/PIER03012101

8. Zhang, M., T. S. Yeo, L. W. Li, and M. S. Leong, "Electromagnetic scattering by a multilayer gyrotropic bianisotropic circular cylinder," Progress In Electromagnetics Research, Vol. 40, 91-111, 2003.
doi:10.2528/PIER02101001

9. Zhang, M., L. W. Li, T. S. Yeo, and M. S. Leong, "Scattering by a gyrotropic bianisotropic cylinder of arbitrary cross section: An analysis using generalized multipole technique ," Progress In Electromagnetics Research, Vol. 40, 315-333, 2003.
doi:10.2528/PIER02103101

10. Wei, B. and D. B. Ge, "Scattering by a two-dimensional cavity filled with anisotropic medium," Waves in Random Media, Vol. 13, No. 4, 223-240, 2003.
doi:10.1088/0959-7174/13/4/302

11. Zheng, H.-X., X.-Q. Sheng, and E. K.-N. Yung, "Computation of scattering from anisotropically coated bodies using conformal FDTD," Progress In Electromagnetics Research, Vol. 35, 287-297, 2002.
doi:10.2528/PIER02030804

12. Chen, H. T., G. Q. Zhu, and S. Y. He, "Using genetic algorithm to reduce the radar cross section of three-dimensional anisotropic impedance object," Progress In Electromagnetics Research B, Vol. 9, 231-248, 2008.
doi:10.2528/PIERB08080202

13. Yang, L. L., D. B. Ge, and B. Wei, "An equivalent anisotropic coating technique based on dyadic surface impedance boundary condition," Chinese Journal of Electronics, Vol. 14, No. 4, 712-716, 2005.

14. Huang, P. K. and H. C. Yin, "Equivalent currents on an anisotropic material backed by a metal surface and their relation," Journal of Systems Engineering and Electronics, Vol. 11, No. 4, 1-10, 2000.

15. Yin, H. C., Z. M. Chao, and Y. P. Xu, "A new free-space method for measurement of electromagnetic parameters of biaxial materials at microwave frequencies," Microwave and Optical Technology Letters, Vol. 46, No. 1, 72-78, Jul. 5, 2005.
doi:10.1002/mop.20905

16. Valagiannopoulos, C. A., "On measuring the permittivity tensor of an anisotropic material from the transmission coefficients," Progress In Electromagnetics Research B, Vol. 9, 105-116, 2008.
doi:10.2528/PIERB08072005

17. Chen, X., T. M. Grzegorczyk, and J. A. Kong, "Optimization approach to the retrieval of the constitutive parameters of slab of general bianisotropic medium ," Progress In Electromagnetics Research, Vol. 60, 1-18, 2006.
doi:10.2528/PIER05120601

18. Fedorov, F. I., G. N. Borzdov, and L. M. Barkovskii, "Operator for the indices of refraction of plane waves in dispersive anisotropic media," Journal of Applied Spectroscopy, Vol. 43, No. 4, 1176-1182, 1985.
doi:10.1007/BF00662340

19. Borzdov, G. N., "An intrinsic tensor technique in Minkowski space with applications to boundary value problems," J. Math. Phys., Vol. 34, No. 7, 3162-3196, 1993.
doi:10.1063/1.530069

20. Kong, J. A., Electromagnetic Wave Theory, High Education Press, 2002.

21. Taflov, A. and S. C. Hagness, Computational Electrodynamics --- The Finite Difference Time Domain Method, 3 Ed., Artech House, 2005.

22. John, S. and H. Scott, "The finite-difference time-domain method applied to anisotropic material," IEEE Trans. Antenna Propag., Vol. 41, No. 7, 994-999, 1993.
doi:10.1109/8.237636