Vol. 7
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-07-02
Non-Uniqueness of T-Charts for Solving Ccitl Problems with Passive Characteristic Impedances
By
Progress In Electromagnetics Research M, Vol. 7, 193-205, 2009
Abstract
Conjugately characteristic-impedance transmission lines (CCITLs) implemented by lossless periodic transmission-line structures have found various applications in microwave technology, and the T-chart was developed to perform the analysis and design of CCITLs effectively. Originally, the normalization factor used in defining normalized impedances of the T-chart is the geometric mean of characteristic impedances of CCITLs, which is not only one possible choice. By using other normalization factors based on characteristic impedances, different graphical representations can be obtained; i.e., T-charts for CCITLs with passive characteristic impedances are not unique, and it depends on the associated normalization factor. In this study, three more possible normalization factors related to characteristic impedances of CCITLs are investigated. It is found that all T-charts for each normalization factor are strongly dependent on the argument of characteristic impedances of CCITLs in a complicated fashion. The original T-chart based on the geometric mean of characteristic impedances is found to be the most convenient graphical representation for solving CCITL problems.
Citation
Kanokwan Vudhivorn, Danai Torrungrueng, and Chananya Thimaporn, "Non-Uniqueness of T-Charts for Solving Ccitl Problems with Passive Characteristic Impedances," Progress In Electromagnetics Research M, Vol. 7, 193-205, 2009.
doi:10.2528/PIERM09052803
References

1. Torrungrueng, D. and C. Thimaporn, "A generalized ZY Smith chart for solving nonreciprocal uniform transmission-lines problems," Microwave and Optical Technology Letters, Vol. 40, No. 1, 57-61, 2004.
doi:10.1002/mop.11284

2. Torrungrueng, D. and C. Thimaporn, "Applications of the ZY T-chart for nonreciprocal stub tuner," Microwave and Optical Technology Letters, Vol. 45, No. 3, 259-262, 2005.
doi:10.1002/mop.20789

3. Torrungrueng, D. and C. Thimaporn, "Applications of the T-chart for solving exponentially tapered lossless nonuniform transmission-lines problems," Microwave and Optical Technology Letters, Vol. 45, No. 3, 402-406, 2005.
doi:10.1002/mop.20836

4. Torrungrueng, D., C. Thimaporn, and N. Chamnandechakun, "An applications of the T-chart for solving problems associated with terminated finite lossless periodic structures," Microwave and Optical Technology Letters, Vol. 47, No. 6, 594-597, 2005.
doi:10.1002/mop.21239

5. Lamultree, S. and D. Torrungrueng, "On the characteristics of conjugately characteristic impedance transmission lines with active characteristic impedance," Proceedings of the 2006 Asia-Pacific Microwave Conference, Vol. 1, 225-228, Yokohama, Japan, December 2006.

6. Torrungrueng, D., P. Y. Chou, and M. Krairiksh, "An extended ZY T-chart for conjugately characteristic impedance transmission lines with active characteristic impedances," Microwave and Optical Technology Letters, Vol. 49, No. 8, 1961-1964, 2007.
doi:10.1002/mop.22626

7. Torrungrueng, D. and S. Lamultree, "Equivalent graphical solutions of terminated conjugately characteristic-impedance transmission lines with non-negative and corresponding negative characteristic resistance," Progress In Electromagnetics Research, PIER 92, 137-151, 2009.

8. Wu, Y. and Y. Liu, "Standard Smith chart approach to solve exponential tapered nonuniform transmission line problems," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 11-12, 1639-1646, 2008.
doi:10.1163/156939308786389997

9. Torrungrueng, D., S. Lamultree, C. Phongcharoenpanich, and M. Krairiksh, "In-depth analysis of reciprocal periodic structures of transmission lines," IET Microwaves, Antennas and Propagation, Vol. 3, 591-600, 2009.
doi:10.1049/iet-map.2008.0205

10. Zhu, Y. and R. Lee, "Tvfem analysis of periodic structures for radiation and scattering," Progress In Electromagnetic Research, PIER 25, 1-22, 2000.

11. Khalaj-Amirhosseini, M., "Analysis of periodic and aperiodic coupled nonuniform transmission lines using the fourier series expansion," Progress In Electromagnetics Research, PIER 65, 15-26, 2006.

12. Lu, W. and T.-J. Cui, "Efficient method for full-wave analysis of large-scale finite-sized periodic structures," Journal of Electromagnetic Waves and Application, Vol. 21, No. 14, 2157-2168, 2007.
doi:10.1163/156939307783152812

13. Du, P., B.-Z. Wang, H. Li, and G. Zheng, "Scattering analysis of large-scale periodic structures using the sub-entire domain basis function method and characteristic function method," Journal of Electromagnetic Waves and Application, Vol. 21, No. 14, 2085-2094, 2007.
doi:10.1163/156939307783152957

14. Fardis, M. and R. Khosravi, "Analysis of periodically loaded suspended substrate structures in millimeter wave," Progress In Electromagnetics Research B, Vol. 3, 143-156, 2008.
doi:10.2528/PIERB07120901

15. Lu, W. B., Q. Y. Zhao, and T.-J. Cui, "Sub-entire-domain basis function method for irrectangular periodic structures," Progress In Electromagnetics Research B, Vol. 5, 91-105, 2008.
doi:10.2528/PIERB08020401