Vol. 11
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2009-10-14
A Half Hollow Cylindrical Antenna (HHCA) Analysis Using the CFDTD Algorithm
By
Progress In Electromagnetics Research C, Vol. 11, 51-60, 2009
Abstract
In this paper, a direct three dimensional Finite-Difference Time-Domain (3D-FDTD) approach is implemented to investigate the electromagnetic behavior of a Half Hollow Cylindrical Antenna. The conformal shape of this antenna is studied using the Conformal Finite-Difference Time-Domain (CFDTD). We shall prove that a variation of the antenna shape generates an important shift of the values of the resonant frequency (about 0.467 GHz). Compared with the planar shape, the geometrical shape reduces the space occupied by the antenna of about 36,28%.
Citation
Denden Mohsen Nabil Ghannay Abdelaziz Samet , "A Half Hollow Cylindrical Antenna (HHCA) Analysis Using the CFDTD Algorithm," Progress In Electromagnetics Research C, Vol. 11, 51-60, 2009.
doi:10.2528/PIERC09090804
http://www.jpier.org/PIERC/pier.php?paper=09090804
References

1. Qian, Z. H., R.-S. Chen, K. W. Leung, and H. W. Yang, "FDTD analysis of microstrip patch antenna covered by plasma sheath," Progress In Electromagnetics Research, Vol. 52, 173-183, 2005.
doi:10.2528/PIER04080901

2. Hu, X.-J. and D.-B. Ge, "Study on conformal FDTD for electromagnetic scattering by targets with thin coating," Progress In Electromagnetics Research, Vol. 79, 305-319, 2008.
doi:10.2528/PIER07101902

3. Sheen, D. M., S. M. Ali, M. D. Abouzahra, and J. A. Kong, "Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits," IEEE Trans. Microwave Theory and Techniques, Vol. 38, Jul. 1990.

4. Xiao, T. and Q. H. Liu, "A staggered upwind embedded boundary (SUEB) method to eliminate the FDTD staircasing error," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 3, 730-741, Mar. 2004.
doi:10.1109/TAP.2004.824675

5. Benkler, S., N. Chavannes, and N. Kuster, "A new 3-D conformal PEC FDTD scheme with user-defined geometric precision and derived stability criterion," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 6, 1843-1849, Jun. 2006.
doi:10.1109/TAP.2006.875909

6. Benkler, S., N. Chavannes, and N. Kuster, "Mastering conformal meshing for complex CAD-based C-FDTD simulations," IEEE Antennas and Propagation Magazine, Vol. 50, No. 2, 45-47, Apr. 2008.
doi:10.1109/MAP.2008.4562256

7. El Brak, M. and M. Essaaidi, "Rigorous analysis of conformal microstrip patch antennas," Microwave and Optical Technology Letters, Vol. 37, No. 5, 372-376, 2003.
doi:10.1002/mop.10922

8. Lu, Q., X. W. Xu, and M. He, International Conference on Microwave and Millimeter Wave Technology, 2008. ICMMT 2008.,, Vol. 2, 527-530, Apr. 21{24, 2008.

9. Kashiwa, T., T. Onishi, and I. Fukai, "Analysis of microstrip antennas on a curved surface using the conformal grids FD-TD method," Antennas and Propagation Society International Symposium, 1993. AP-S. Digest, Vol. 1, 34-37, Jun. 28--Jul. 2, 1993.

10. Jurgens, T. G., A. Taflove, K. Umashankar, and T. G. Moore, "Finite-difference time-domain modeling of curved surfaces," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 4, 357-366, Apr. 1992.
doi:10.1109/8.138836

11. Dey, S., R. Mittra, and S. Chebolu, "A technique for implementing the fdtd algorithm on a nonorthogonal grid," Microwave and Optical Technology Letters, Vol. 14, No. 4, 213-215, Mar. 1997.
doi:10.1002/(SICI)1098-2760(199703)14:4<213::AID-MOP6>3.0.CO;2-M

12. Dey, S. and R. Mittra, "A modified locally conformalfinite-differenc time-domain algorithm for modeling three-dimensional perfectly conducting objects," IEEE Microwave and Optical Technology Letters, Vol. 17, No. 6, Apr. 20, 1998.

13. Lu, Q., X. W. Xu, and M. He, Analysis of a probe-fed cylindrically conformal microstrip patch antenna using the conformal FDTD algorithm, 2007 International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, 876-879, Aug. 2007.

14. Zagorodnov, I. A., R. Schuhmann, and T. Weiland, "A uniformly stable conformal FDTD-method in Cartesian grids," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 16, 127-141, 2003.
doi:10.1002/jnm.488

15. Zagorodnov, I., R. Schuhmann, and T. Weiland, "Conformal FDTD-methods to avoid time step reduction with and without cell enlargement," Journal of Computational Physics, Vol. 225, No. 2, 1493-1507, 2007.
doi:10.1016/j.jcp.2007.02.002

16. Dey, S. and R. Mittra, "A locally conformal finite-difference time-domain (FDTD) algorithm for modeling three-dimensional perfectly conducting objects," IEEE Microwave Guid. Wave Lett., Vol. 7, No. 9, 273-275, Sept. 1997.
doi:10.1109/75.622536

17. Yu, W. H. and R. Mittra, "A conformal finite difference time domain technique for modeling curved dielectric surfaces," IEEE Microwave Compon. Lett., Vol. 11, No. 1, 25-27, Jan. 2001.
doi:10.1109/7260.905957

18. Su, T., Y. J. Liu, W. H. Yu, and R. Mittra, "A conformal mesh-generating technique for the conformal finite-difference time-domain (CFDTD) method," IEEE Antennas and Propagation Magazine, Vol. 46, No. 1, 37-49, Feb. 2004.
doi:10.1109/MAP.2004.1296143

19. Dey, S., "Efficient modeling of thin perfectly conducting sheet type of objects by using the finite-difference time-domain technique," Microwave and Optical Technology Letters, Vol. 14, No. 5, 333-336, Mar. 2001.
doi:10.1002/1098-2760(20010305)28:5<333::AID-MOP1034>3.0.CO;2-2

20. Waldschmidt, G. and A. Taflove, "Three-dimensional CAD-based mesh generator for the Dey-Mittra conformal FDTD algorithm," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 7, 1658-1661, Jul. 2004.
doi:10.1109/TAP.2004.831334

21. Taflove, A., Advances in the Finite-difference Time-domain Method, Artech House, Inc., 1998.

22. Yu, W. H. and R. Mittra, "A conformal FDTD software package modeling antennas and microstrip circuit components," IEEE Antennas and Propagation Magazine, Vol. 42, No. 5, 28-39, Oct. 2000.

23. Zhao, A. P. and A. V. Raisanen, "Application of a simple and efficient source excitation technique to the FDTD analysis of waveguide and microstrip circuits," IEEE Microwave Theory and Techniques, Vol. 44, No. 9, 1535-1539, 1996.
doi:10.1109/22.536601

24. Balanis, C. A., Antenna Theory Analysis and Design, John Wiley, 1997.

25. Ravard, K., C. Rostoll, R. Gillarrd, and J. Citerne, "Far field computation for the FDTD method in curvilinear coordinates," Microwave Symposium Digest, 1999 IEEE MTT-S International, 1999.