1. Qian, Z. H., R.-S. Chen, K. W. Leung, and H. W. Yang, "FDTD analysis of microstrip patch antenna covered by plasma sheath," Progress In Electromagnetics Research, Vol. 52, 173-183, 2005.
doi:10.2528/PIER04080901 Google Scholar
2. Hu, X.-J. and D.-B. Ge, "Study on conformal FDTD for electromagnetic scattering by targets with thin coating," Progress In Electromagnetics Research, Vol. 79, 305-319, 2008.
doi:10.2528/PIER07101902 Google Scholar
3. Sheen, D. M., S. M. Ali, M. D. Abouzahra, and J. A. Kong, "Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits," IEEE Trans. Microwave Theory and Techniques, Vol. 38, Jul. 1990. Google Scholar
4. Xiao, T. and Q. H. Liu, "A staggered upwind embedded boundary (SUEB) method to eliminate the FDTD staircasing error," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 3, 730-741, Mar. 2004.
doi:10.1109/TAP.2004.824675 Google Scholar
5. Benkler, S., N. Chavannes, and N. Kuster, "A new 3-D conformal PEC FDTD scheme with user-defined geometric precision and derived stability criterion," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 6, 1843-1849, Jun. 2006.
doi:10.1109/TAP.2006.875909 Google Scholar
6. Benkler, S., N. Chavannes, and N. Kuster, "Mastering conformal meshing for complex CAD-based C-FDTD simulations," IEEE Antennas and Propagation Magazine, Vol. 50, No. 2, 45-47, Apr. 2008.
doi:10.1109/MAP.2008.4562256 Google Scholar
7. El Brak, M. and M. Essaaidi, "Rigorous analysis of conformal microstrip patch antennas," Microwave and Optical Technology Letters, Vol. 37, No. 5, 372-376, 2003.
doi:10.1002/mop.10922 Google Scholar
8. Lu, Q., X. W. Xu, and M. He, "International Conference on Microwave and Millimeter Wave Technology, 2008. ICMMT 2008.," Vol. 2, 527-530, Apr. 21{24, 2008.
9. Kashiwa, T., T. Onishi, and I. Fukai, "Analysis of microstrip antennas on a curved surface using the conformal grids FD-TD method," Antennas and Propagation Society International Symposium, 1993. AP-S. Digest, Vol. 1, 34-37, Jun. 28--Jul. 2, 1993. Google Scholar
10. Jurgens, T. G., A. Taflove, K. Umashankar, and T. G. Moore, "Finite-difference time-domain modeling of curved surfaces," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 4, 357-366, Apr. 1992.
doi:10.1109/8.138836 Google Scholar
11. Dey, S., R. Mittra, and S. Chebolu, "A technique for implementing the fdtd algorithm on a nonorthogonal grid," Microwave and Optical Technology Letters, Vol. 14, No. 4, 213-215, Mar. 1997.
doi:10.1002/(SICI)1098-2760(199703)14:4<213::AID-MOP6>3.0.CO;2-M Google Scholar
12. Dey, S. and R. Mittra, "A modified locally conformalfinite-differenc time-domain algorithm for modeling three-dimensional perfectly conducting objects," IEEE Microwave and Optical Technology Letters, Vol. 17, No. 6, Apr. 20, 1998. Google Scholar
13. Lu, Q., X. W. Xu, and M. He, "Analysis of a probe-fed cylindrically conformal microstrip patch antenna using the conformal FDTD algorithm," 2007 International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, 876-879, Aug. 2007.
14. Zagorodnov, I. A., R. Schuhmann, and T. Weiland, "A uniformly stable conformal FDTD-method in Cartesian grids," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 16, 127-141, 2003.
doi:10.1002/jnm.488 Google Scholar
15. Zagorodnov, I., R. Schuhmann, and T. Weiland, "Conformal FDTD-methods to avoid time step reduction with and without cell enlargement," Journal of Computational Physics, Vol. 225, No. 2, 1493-1507, 2007.
doi:10.1016/j.jcp.2007.02.002 Google Scholar
16. Dey, S. and R. Mittra, "A locally conformal finite-difference time-domain (FDTD) algorithm for modeling three-dimensional perfectly conducting objects," IEEE Microwave Guid. Wave Lett., Vol. 7, No. 9, 273-275, Sept. 1997.
doi:10.1109/75.622536 Google Scholar
17. Yu, W. H. and R. Mittra, "A conformal finite difference time domain technique for modeling curved dielectric surfaces," IEEE Microwave Compon. Lett., Vol. 11, No. 1, 25-27, Jan. 2001.
doi:10.1109/7260.905957 Google Scholar
18. Su, T., Y. J. Liu, W. H. Yu, and R. Mittra, "A conformal mesh-generating technique for the conformal finite-difference time-domain (CFDTD) method," IEEE Antennas and Propagation Magazine, Vol. 46, No. 1, 37-49, Feb. 2004.
doi:10.1109/MAP.2004.1296143 Google Scholar
19. Dey, S., "Efficient modeling of thin perfectly conducting sheet type of objects by using the finite-difference time-domain technique," Microwave and Optical Technology Letters, Vol. 14, No. 5, 333-336, Mar. 2001.
doi:10.1002/1098-2760(20010305)28:5<333::AID-MOP1034>3.0.CO;2-2 Google Scholar
20. Waldschmidt, G. and A. Taflove, "Three-dimensional CAD-based mesh generator for the Dey-Mittra conformal FDTD algorithm," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 7, 1658-1661, Jul. 2004.
doi:10.1109/TAP.2004.831334 Google Scholar
21. Taflove, A., Advances in the Finite-difference Time-domain Method, Artech House, Inc., 1998.
22. Yu, W. H. and R. Mittra, "A conformal FDTD software package modeling antennas and microstrip circuit components," IEEE Antennas and Propagation Magazine, Vol. 42, No. 5, 28-39, Oct. 2000. Google Scholar
23. Zhao, A. P. and A. V. Raisanen, "Application of a simple and efficient source excitation technique to the FDTD analysis of waveguide and microstrip circuits," IEEE Microwave Theory and Techniques, Vol. 44, No. 9, 1535-1539, 1996.
doi:10.1109/22.536601 Google Scholar
24. Balanis, C. A., Antenna Theory Analysis and Design, John Wiley, 1997.
25. Ravard, K., C. Rostoll, R. Gillarrd, and J. Citerne, "Far field computation for the FDTD method in curvilinear coordinates," Microwave Symposium Digest, 1999 IEEE MTT-S International, 1999. Google Scholar