Vol. 12
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-05-27
On Developing Alternating Voltage Around a Rotating Circular Ring Under Plane Wave Excitation in the Presence of an Eccentrically Positioned Metallic Core
By
Progress In Electromagnetics Research M, Vol. 12, 193-204, 2010
Abstract
Rotating coils constitute a type of electrical transformers used to produce alternating voltage pulses exploiting the phenomenon of electromagnetic induction. In this study, we investigate the influence of the electromagnetic scattering from a metallic obstacle located inside the moving component. In particular, a perfectly conducting spherical core is positioned eccentrically inside a thin circular ring, rotating around an arbitrary axis passing through its own center, under plane wave excitation. Methods and formulas implemented in scattering and induction problems have been utilized for the derivation of the developed potential difference around the loop. Several graphs of the voltage output versus the geometrical characteristics of the con guration, are shown and explained.
Citation
Constantinos Valagiannopoulos, "On Developing Alternating Voltage Around a Rotating Circular Ring Under Plane Wave Excitation in the Presence of an Eccentrically Positioned Metallic Core," Progress In Electromagnetics Research M, Vol. 12, 193-204, 2010.
doi:10.2528/PIERM10040405
References

1. Vaseghi, B., N. Takorabet, and F. Meibody-Tabar, "Transient finite element analysis of induction machines with stator winding turn fault," Progress In Electromagnetics Research, Vol. 95, 1-18, 2009.
doi:10.2528/PIER09052004

2. Sun, X. Y. and Z.-P. Nie, "Vector finite element analysis of multicomponent induction response in anisotropic formations," Progress In Electromagnetics Research, Vol. 81, 21-39, 2008.
doi:10.2528/PIER07121502

3. Hwang, S. M., J. I. Hong, and C. S. Huh, "Characterization of the susceptibility of integrated circuits with induction caused by high power microwaves," Progress In Electromagnetics Research, Vol. 81, 61-72, 2008.
doi:10.2528/PIER07121704

4. Nesterenko, M. V., D. Y. Penkin, V. A. Katrich, and V. M. Dakhov, "Equation solution for the current in radial impedance monopole on the perfectly conducting sphere," Progress In Electromagnetics Research B, Vol. 19, 95-114, 2010.
doi:10.2528/PIERB09111105

5. Valagiannopoulos, C. A., "An overview of the Watson transforAn overview of the Watson transfor," Progress In Electromagnetics Research, Vol. 75, 137-152, 2007.
doi:10.2528/PIER07052502

6. Alexopoulos, A., "Scattering cross section of a meta-sphere," Progress In Electromagnetics Research Letters, Vol. 9, 85-91, 2009.
doi:10.2528/PIERL09050601

7. Valagiannopoulos, C. A., "Single-series solution to the radiation of loop antenna in the presence of a conducting sphere," Progress In Electromagnetics Research, Vol. 71, 277-294, 2007.
doi:10.2528/PIER07030803

8. Coxeter, H. S. and S. L. Greitzer, Geometry Revisited, 8285, Mathematical Association of America, 1967.

9. Sadiku, M., Elements of Electromagnetics, 372, Oxford Series in Electrical and Computer Engineering, 2001.

10. Balanis, C. A., Advanced Engineering Electromagnetics, 924, John Wiley & Sons, 1989.

11. Wrede, R. C. and M. R. Spiegel, Advanced Calculus, 229-232, Schaumm's Outline Series, 2002.

12. Erma, V. A., "Exact solution for the scattering of electromagnetic waves from conductors of arbitrary shape. II. General case," Physical Review, 1544-1553, 1968.
doi:10.1103/PhysRev.176.1544

13. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, 437-438, National Bureau of Standards, 1970.