1. Delamare, J., E. Rulliere, and J. P. Yonnet, "Classification and synthesis of permanent magnet bearing configurations," IEEE Trans. Magn., Vol. 31, No. 6, 4190-4192, 1995.
doi:10.1109/20.489922 Google Scholar
2. Ravaud, R., et al. "Force and stiffness of passive magnetic bearings using permanent magnets. Part 1: Axial magnetization," IEEE Trans. Magn., Vol. 45, No. 7, 2996-3002, 2009.
doi:10.1109/TMAG.2009.2016088 Google Scholar
3. Ravaud, R., et al. "Force and stiffness of passive magnetic bearings using permanent magnets. Part 2: Radial magnetization," IEEE Trans. Magn., Vol. 45, No. 9, 3334-3342, 2009.
doi:10.1109/TMAG.2009.2025315 Google Scholar
4. Azzerboni, B., E. Cardelli, and A. Tellini, "Computation of the magnetic field in massive conductor systems," IEEE Trans. Magn., Vol. 25, No. 6, 4462-4473, 1989.
doi:10.1109/20.45327 Google Scholar
5. Furlani, E. P., S. Reznik, and A. Kroll, "A three-dimensonal field solution for radially polarized cylinders," IEEE Trans. Magn.,, Vol. 31, No. 1, 844-851, 1995.
doi:10.1109/20.364587 Google Scholar
6. Kim, K., et, and al., "Mutual inductance of noncoaxial circular coils with constant current density," IEEE Trans. Magn., Vol. 33, No. 5, 4303-4309, 1997.
doi:10.1109/20.620439 Google Scholar
7. Babic, S., et, and al., "Analytical calculation of the 3d magnetostatic ¯eld of a torroidal conductor with rectangular cross section ," IEEE Trans. Magn., Vol. 24, No. 6, 3162-3164, 1988.
doi:10.1109/20.92368 Google Scholar
8. Ravaud, R. and G. Lemarquand, "Comparison of the coulombian and amperian current models for calculating the magnetic field produced by radially magnetized arc-shaped permanent magnets," Progress In Electromagnetics Research, Vol. 95, 309-327, 2009.
doi:10.2528/PIER09042105 Google Scholar
9. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Discussion about the analytical calculation of the magnetic field created by permanent magnets," Progress In Electromagnetics Research B, Vol. 11, 281-297, 2009.
doi:10.2528/PIERB08112102 Google Scholar
10. Babic, S. I. and C. Akyel, "Improvement in the analytical calculation of the magnetic field produced by permanent magnet rings," Progress In Electromagnetics Research C, Vol. 5, 71-82, 2008. Google Scholar
11. Ravaud, R., et, and al., "Analytical calculation of the magnetic field created by permanent-magnet rings," IEEE Trans. Magn., Vol. 44, No. 8, 1982-1989, 2008.
doi:10.1109/TMAG.2008.923096 Google Scholar
12. Ravaud, R., G. Lemarquand, and V. Lemarquand, "Magnetic field created by tile permanent magnets," IEEE Trans. Magn., Vol. 45, No. 7, 2920-2926, 2009.
doi:10.1109/TMAG.2009.2014752 Google Scholar
13. Selvaggi, J. P., et, and al., "Calculating the external magnetic field from permanent magnets in permanent-magnet motors --- An alternative method," IEEE Trans. Magn., Vol. 40, No. 5, 3278-3285, 2004.
doi:10.1109/TMAG.2004.831653 Google Scholar
14. Blache, C. and G. Lemarquand, "New structures for linear displacement sensor with hight magnetic field gradient," IEEE Trans. Magn., Vol. 28, No. 5, 2196-2198, 1992.
doi:10.1109/20.179441 Google Scholar
15. Azzerboni, B., et, and al., "Analytic expressions for magnetic field from finite curved conductors," IEEE Trans. Magn., Vol. 27, No. 2, 750-757, 1991.
doi:10.1109/20.133288 Google Scholar
16. Akoun, G. and J. P. Yonnet, "3d analytical calculation of the forces exerted between two cuboidal magnets," IEEE Trans. Magn., Vol. 20, No. 5, 1962-1964, 1984.
doi:10.1109/TMAG.1984.1063554 Google Scholar
17. Lemarquand, V., J. F. Charpentier, and G. Lemarquand, "Nonsinusoidal torque of permanent-magnet couplings," IEEE Trans. Magn., Vol. 35, No. 5, 4200-4205, 1999.
doi:10.1109/20.799068 Google Scholar
18. Lang, M., "Fast calculation method for the forces and stiffnesses of permanent-magnet bearings," 8th International Symposium on Magnetic Bearing, 533-537, 2002. Google Scholar
19. Ohji, T., et, and al., "Performance of repulsive type magnetic bearing system under nonuniform magnetization of permanent magnet," IEEE Trans. Magn., Vol. 36, No. 5, 3696-3698, 2000.
doi:10.1109/20.908944 Google Scholar
20. Samanta, P. and H. Hirani, "Magnetic bearing configurations: Theoretical and experimental studies," IEEE Trans. Magn., Vol. 44, No. 2, 292-300, 2008.
doi:10.1109/TMAG.2007.912854 Google Scholar
21. Hussien, A., et, and al., "Application of the repulsive-type magnetic bearing for manufacturing micromass measurement balance equipment," IEEE Trans. Magn., Vol. 41, No. 10, 3802-3804, 2005.
doi:10.1109/TMAG.2005.854929 Google Scholar
22. Mukhopadhyay, S. C., et, and al., "Fabrication of a repulsive-type magnetic bearing using a novel arrangement of permanent magnets for vertical-rotor suspension," IEEE Trans. Magn., Vol. 39, No. 5, 3220-3222, 2003.
doi:10.1109/TMAG.2003.816727 Google Scholar
23. Janssen, J., et, and al., "Three-dimensional analytical calculation of the torque between permanent magnets in magnetic bearings," IEEE Trans. Mag., Vol. 46, No. 6, 1748-1751, 2010.
doi:10.1109/TMAG.2010.2043224 Google Scholar
24. Azukizawa, T., S. Yamamoto, and N. Matsuo, "Feasibility study of a passive magnetic bearing using the ring shaped permanent magnets," IEEE Trans. Magn., Vol. 44, No. 11, 4277-4280, 2008.
doi:10.1109/TMAG.2008.2001490 Google Scholar
25. Hijikata, K., et, and al., "Behavior of a novel thrust magnetic bearing with a cylindrical rotor on high speed rotation," IEEE Trans. Magn., Vol. 45, No. 10, 4617-4620, 2009.
doi:10.1109/TMAG.2009.2022178 Google Scholar
26. Filatov, A. and E. Maslen, "Passive magnetic bearing for flywheel energy storage systems," IEEE Trans. Magn., Vol. 37, No. 6, 3913-3924, 2001.
doi:10.1109/20.966127 Google Scholar
27. Moser, R., J. Sandtner, and H. Bleuler, "Optimization of repulsive passive magnetic bearings," IEEE. Trans. Magn., Vol. 42, No. 8, 2038-2042, 2006.
doi:10.1109/TMAG.2005.861160 Google Scholar
28. Halbach, K., "Design of permanent multiple magnets with oriented rec material ," Nucl. Inst. Meth., Vol. 169, 1-10, 1980.
doi:10.1016/0029-554X(80)90094-4 Google Scholar
29. Ravaud, R. and G. Lemarquand, "Discussion about the magnetic field produced by cylindrical halbach structures," Progress In Electromagnetics Research B, Vol. 13, 275-308, 2009.
doi:10.2528/PIERB09012004 Google Scholar