Vol. 14
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-11-12
Halbach Structures for Permanent Magnets Bearings
By
Progress In Electromagnetics Research M, Vol. 14, 263-277, 2010
Abstract
This paper is the third part of a series dealing with permanent magnet passive magnetic bearings. It presents analytical expressions of the axial force and stiffness in radial passive magnetic bearings made of ring permanent magnets with perpendicular polarizations: the inner ring polarization is perpendicular to the outer ring one. The main goal of this paper is to present a simple analytical model which can be easily implemented in Matlab or Mathematica so as to carry out parametric studies. This paper first compares the axial force and stiffness in bearings with axial, radial and perpendicular polarizations. Then, bearings made of stacked ring magnets with alternate polarizations are studied for the three kinds of polarizations, axial, radial and perpendicular. The latter correspond to Halbach structures. These calculations are useful for identifying the structures required for having great axial forces and the ones allowing to get great axial stiffnesses.
Citation
Romain Ravaud Guy Lemarquand Valerie Lemarquand , "Halbach Structures for Permanent Magnets Bearings," Progress In Electromagnetics Research M, Vol. 14, 263-277, 2010.
doi:10.2528/PIERM10100401
http://www.jpier.org/PIERM/pier.php?paper=10100401
References

1. Delamare, J., E. Rulliere, and J. P. Yonnet, "Classification and synthesis of permanent magnet bearing configurations," IEEE Trans. Magn., Vol. 31, No. 6, 4190-4192, 1995.
doi:10.1109/20.489922

2. Ravaud, R., et al., "Force and stiffness of passive magnetic bearings using permanent magnets. Part 1: Axial magnetization," IEEE Trans. Magn., Vol. 45, No. 7, 2996-3002, 2009.
doi:10.1109/TMAG.2009.2016088

3. Ravaud, R., et al., "Force and stiffness of passive magnetic bearings using permanent magnets. Part 2: Radial magnetization," IEEE Trans. Magn., Vol. 45, No. 9, 3334-3342, 2009.
doi:10.1109/TMAG.2009.2025315

4. Azzerboni, B., E. Cardelli, and A. Tellini, "Computation of the magnetic field in massive conductor systems," IEEE Trans. Magn., Vol. 25, No. 6, 4462-4473, 1989.
doi:10.1109/20.45327

5. Furlani, E. P., S. Reznik, and A. Kroll, "A three-dimensonal field solution for radially polarized cylinders," IEEE Trans. Magn.,, Vol. 31, No. 1, 844-851, 1995.
doi:10.1109/20.364587

6. Kim, K., et al., "Mutual inductance of noncoaxial circular coils with constant current density," IEEE Trans. Magn., Vol. 33, No. 5, 4303-4309, 1997.
doi:10.1109/20.620439

7. Babic, S., et al., "Analytical calculation of the 3d magnetostatic ¯eld of a torroidal conductor with rectangular cross section ," IEEE Trans. Magn., Vol. 24, No. 6, 3162-3164, 1988.
doi:10.1109/20.92368

8. Ravaud, R. and G. Lemarquand, "Comparison of the coulombian and amperian current models for calculating the magnetic field produced by radially magnetized arc-shaped permanent magnets," Progress In Electromagnetics Research, Vol. 95, 309-327, 2009.
doi:10.2528/PIER09042105

9. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Discussion about the analytical calculation of the magnetic field created by permanent magnets," Progress In Electromagnetics Research B, Vol. 11, 281-297, 2009.
doi:10.2528/PIERB08112102

10. Babic, S. I. and C. Akyel, "Improvement in the analytical calculation of the magnetic field produced by permanent magnet rings," Progress In Electromagnetics Research C, Vol. 5, 71-82, 2008.

11. Ravaud, R., et al., "Analytical calculation of the magnetic field created by permanent-magnet rings," IEEE Trans. Magn., Vol. 44, No. 8, 1982-1989, 2008.
doi:10.1109/TMAG.2008.923096

12. Ravaud, R., , G. Lemarquand, and V. Lemarquand, "Magnetic field created by tile permanent magnets," IEEE Trans. Magn., Vol. 45, No. 7, 2920-2926, 2009.
doi:10.1109/TMAG.2009.2014752

13. Selvaggi, J. P., et al., "Calculating the external magnetic field from permanent magnets in permanent-magnet motors --- An alternative method," IEEE Trans. Magn., Vol. 40, No. 5, 3278-3285, 2004.
doi:10.1109/TMAG.2004.831653

14. Blache, C. and G. Lemarquand, "New structures for linear displacement sensor with hight magnetic field gradient," IEEE Trans. Magn., Vol. 28, No. 5, 2196-2198, 1992.
doi:10.1109/20.179441

15. Azzerboni, B., et al., "Analytic expressions for magnetic field from finite curved conductors," IEEE Trans. Magn., Vol. 27, No. 2, 750-757, 1991.
doi:10.1109/20.133288

16. Akoun, G. and J. P. Yonnet, "3d analytical calculation of the forces exerted between two cuboidal magnets," IEEE Trans. Magn., Vol. 20, No. 5, 1962-1964, 1984.
doi:10.1109/TMAG.1984.1063554

17. Lemarquand, V., J. F. Charpentier, and G. Lemarquand, "Nonsinusoidal torque of permanent-magnet couplings," IEEE Trans. Magn., Vol. 35, No. 5, 4200-4205, 1999.
doi:10.1109/20.799068

18. Lang, M., "Fast calculation method for the forces and stiffnesses of permanent-magnet bearings," 8th International Symposium on Magnetic Bearing, 533-537, 2002.

19. Ohji, T., et al., "Performance of repulsive type magnetic bearing system under nonuniform magnetization of permanent magnet," IEEE Trans. Magn., Vol. 36, No. 5, 3696-3698, 2000.
doi:10.1109/20.908944

20. Samanta, P. and H. Hirani, "Magnetic bearing configurations: Theoretical and experimental studies," IEEE Trans. Magn., Vol. 44, No. 2, 292-300, 2008.
doi:10.1109/TMAG.2007.912854

21. Hussien, A., et al., "Application of the repulsive-type magnetic bearing for manufacturing micromass measurement balance equipment," IEEE Trans. Magn., Vol. 41, No. 10, 3802-3804, 2005.
doi:10.1109/TMAG.2005.854929

22. Mukhopadhyay, S. C., et al., "Fabrication of a repulsive-type magnetic bearing using a novel arrangement of permanent magnets for vertical-rotor suspension," IEEE Trans. Magn., Vol. 39, No. 5, 3220-3222, 2003.
doi:10.1109/TMAG.2003.816727

23. Janssen, J., et al., "Three-dimensional analytical calculation of the torque between permanent magnets in magnetic bearings," IEEE Trans. Mag., Vol. 46, No. 6, 1748-1751, 2010.
doi:10.1109/TMAG.2010.2043224

24. Azukizawa, T., S. Yamamoto, and N. Matsuo, "Feasibility study of a passive magnetic bearing using the ring shaped permanent magnets," IEEE Trans. Magn., Vol. 44, No. 11, 4277-4280, 2008.
doi:10.1109/TMAG.2008.2001490

25. Hijikata, K., et al., "Behavior of a novel thrust magnetic bearing with a cylindrical rotor on high speed rotation," IEEE Trans. Magn., Vol. 45, No. 10, 4617-4620, 2009.
doi:10.1109/TMAG.2009.2022178

26. Filatov, A. and E. Maslen, "Passive magnetic bearing for flywheel energy storage systems," IEEE Trans. Magn., Vol. 37, No. 6, 3913-3924, 2001.
doi:10.1109/20.966127

27. Moser, R., J. Sandtner, and H. Bleuler, "Optimization of repulsive passive magnetic bearings," IEEE. Trans. Magn., Vol. 42, No. 8, 2038-2042, 2006.
doi:10.1109/TMAG.2005.861160

28. Halbach, K., "Design of permanent multiple magnets with oriented rec material ," Nucl. Inst. Meth., Vol. 169, 1-10, 1980.
doi:10.1016/0029-554X(80)90094-4

29. Ravaud, R. and G. Lemarquand, "Discussion about the magnetic field produced by cylindrical halbach structures," Progress In Electromagnetics Research B, Vol. 13, 275-308, 2009.
doi:10.2528/PIERB09012004