Vol. 20
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-08-19
Electrostatic Analysis of Transmission Lines to Simulate Corona Discharge at High Voltage
By
Progress In Electromagnetics Research M, Vol. 20, 107-113, 2011
Abstract
This paper presents the results of Boundary Element Method (BEM) numerical procedures of voltages distribution between transmission lines in order to investigate the theoretical corona discharges. The algorithm of the voltage distributions are coded in Mathematica studying size of the system under controlling Neumann and Dirichlet boundary conditions. Conducting experimental work at a high voltage (HV) is potentially very dangerous. Therefore, simulation is a vital research approach, and computer modeling offers significant advantages to estimate optimal calculation over established system to prevent dangerous voltage and not to exceed the corona voltage. In this paper, the BEM results are verified with Finite Element Methods (FEM) which is coded in Mathematica too.
Citation
Necibe Fusun Oyman Serteller , "Electrostatic Analysis of Transmission Lines to Simulate Corona Discharge at High Voltage," Progress In Electromagnetics Research M, Vol. 20, 107-113, 2011.
doi:10.2528/PIERM11062604
http://www.jpier.org/PIERM/pier.php?paper=11062604
References

1. Kuffel, E. and M. Abdullah, High-voltage Engineering, 32-43, Pergamon Press, 1970.

2. Cristina, S. and A. D. Napoli, "Combination of finite element and boundary element for magnetic field analysis," IEEE Transaction on Magnetics, Vol. 9, 2337-2339, IEEE Magnetic Society, 2003.

3. Wrobel, L., The Boundary Element Method: Applications in Thermo-fluids & Acoustic, John Wiley and Sons, 2002.

4. Gary, G. G. and A. G. Michael, "Boundary element methods for solving Poisson equations in computer vision problems," IEEE Computer Society Conference on Computer Vision, 3-6, IEEE Computer Society, 1991.

5. Trowbridge, C. W., "Electromagnetic computation: The way ahead," IEEE Transaction on Magnetics, Vol. 24, 13-18, IEEE Magnetic Society, 1998.
doi:10.1109/20.43845

6. Sadiku, M. N. O., Elements of Electromagnetic, Oxford University Press, England, 2001.

7. Serteller, N. F. and A. Atalay, "Thermal analysis of ferromagnetic actuator by using finite element method," Elsevier Pysica B Condensed Matter, Vol. 372, 366-368, Elsevier, 2006.
doi:10.1016/j.physb.2005.10.087

8. Gipson, G. S., Boundary Element Fundamentals-Topics in Engineering, Computations Mechanics Publications, South Hampton, England, 1998.

9. Song, W. P., D. I. Yang, Y. H. Chung, and D. S. Kim, "A study of large current interrupting capability of SF/N2 mixtures," IEEE International Symposium on Electrical Insulation, 457-459, Boston, MA, USA, 2002.

10. Malik, N. H., A. A. Al-Aralny, and M. I. Qureshi, Electrical Insulation in Power Systems, Marcel Dekker Inc., 1998.

11. Buchau, A., W. Hafla, and W. W. Rucker, "Accuracy investigations of boundary element methods for solution of laplace equations," IEEE Transaction on Magnetics, Vol. 43, 1225-1228, 2007.
doi:10.1109/TMAG.2007.892304

12. Tong, L. Z., F. X. Zgainski, J. C. Verite, and P. Thomas, "Investigation of gas phenomena in SF6 circuit breaker," IEEE High Voltage Engineering Symposium, 312-315, 1999.

13. Weillin, P., R. Gayllord, and S. Kamin, An Introduction to Programming with Mathematica, Cambridge University Press, England, 2005.
doi:10.1017/CBO9780511801303

14. Smith, I. M. and D. V. Griffths, Programming with the Finite Element Method, John Wiley and Son, England, 2004.

15. Kalenderli, O, C. Kocatepe, and O. Arikan, Cozumlu Problem-lerle Yuksek Gerilim Teknigi Kitab, Birsen Yaynevi, 2005.

16. Abdelmageed, A. K., "Effcient evaluation of modal Green's functions arising in EM scattering by bodies of revolution," Progress In Electromagnetics Research, Vol. 27, 337-356, 2000.
doi:10.2528/PIER99061601

17. Dean, T. R. and T. V. Hromadka, "A collocation CVBEM using program mathematica," Engineering Analysis with Boundary Elements, Vol. 34, 417-421, Elsevier, 2009.
doi:10.1016/j.enganabound.2009.10.007

18. Moroney, D. T. and P. J. Cullen, "The Green's function perturbation method for solution of electromagnetic scattering problems," Progress In Electromagnetics Research, Vol. 15, 221-252, 1997.
doi:10.2528/PIER96012900